The Saccharomyces cerevisiae PHM8 Gene Encodes a Soluble Magnesium-dependent Lysophosphatidic Acid Phosphatase

Phosphate is the essential macronutrient required for the growth of all organisms. In Saccharomyces cerevisiae, phosphatases are up-regulated, and the level of lysophosphatidic acid (LPA) is drastically decreased under phosphate-starved conditions. The reduction in the LPA level is attributed to PHM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-04, Vol.283 (14), p.8846-8854
Hauptverfasser: Reddy, Venky Sreedhar, Singh, Arjun Kumar, Rajasekharan, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphate is the essential macronutrient required for the growth of all organisms. In Saccharomyces cerevisiae, phosphatases are up-regulated, and the level of lysophosphatidic acid (LPA) is drastically decreased under phosphate-starved conditions. The reduction in the LPA level is attributed to PHM8, a gene of unknown function. phm8Δ yeast showed a decreased LPA-hydrolyzing activity under phosphate-limiting conditions. Overexpression of PHM8 in yeast resulted in an increase in the LPA phosphatase activity in vivo. In vitro assays of the purified recombinant Phm8p revealed magnesium-dependent LPA phosphatase activity, with maximal activity at pH 6.5. The purified Phm8p did not hydrolyze any lipid phosphates other than LPA. In silico analysis suggest that Phm8p is a soluble protein with no transmembrane domain. Site-directed mutational studies revealed that aspartate residues in a DXDXT motif are important for the catalysis. These findings indicated that LPA plays a direct role in phosphate starvation. This is the first report of the identification and characterization of magnesium-dependent soluble LPA phosphatase.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M706752200