From Indium-Doped Ag2 S to AgInS2 Nanocrystals: Low-Temperature In Situ Conversion of Colloidal Ag2 S Nanoparticles and Their NIR Fluorescence
Focusing on ternary I-III-VI2 colloidal nanocrystals (NCs) synthesized with precise control of the composition (from doping to ternary composition) and NIR fluorescence performance, monodisperse binary In3+ -doped Ag2 S NCs and ternary AgInS2 NCs have been achieved successfully by facile low-tempera...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2018-09, Vol.24 (51), p.13676-13680 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focusing on ternary I-III-VI2 colloidal nanocrystals (NCs) synthesized with precise control of the composition (from doping to ternary composition) and NIR fluorescence performance, monodisperse binary In3+ -doped Ag2 S NCs and ternary AgInS2 NCs have been achieved successfully by facile low-temperature in situ conversion of colloidal Ag2 S nanoparticles. In3+ ions were inserted into the crystal lattice of Ag2 S NCs at a relatively low temperature as dopant and ternary AgInS2 NCs were obtained at a higher temperature following a phase transition. These doped Ag2 S and AgInS2 NCs based on different indium precursor concentrations were explored with respect to the position and intensity of the near-infrared photoluminescent emission at different doping levels and crystal phase evolution. |
---|---|
ISSN: | 1521-3765 |
DOI: | 10.1002/chem.201802973 |