role of gene polymorphisms in the pathogenesis of chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Irreversible airflow limitation, both progressive and associated with an inflammatory response of the lungs to noxious particles or gases, is a hallmark of the disease. Cigarette smoking is the most i...
Gespeichert in:
Veröffentlicht in: | Biológia 2008-02, Vol.63 (1), p.20-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Irreversible airflow limitation, both progressive and associated with an inflammatory response of the lungs to noxious particles or gases, is a hallmark of the disease. Cigarette smoking is the most important environmental risk factor for COPD, nevertheless, only approximately 20â30% of smokers develop symptomatic disease. Epidemiological studies, case-control studies in relatives of patients with COPD, and twin studies suggest that COPD is a genetically complex disease with environmental factors and many involved genes interacting together. Two major strategies have been employed to identify the genes and the polymorphisms that likely contribute to the development of complex diseases: association studies and linkage analyses. Biologically plausible pathogenetic mechanisms are prerequisites to focus the search for genes of known function in association studies. Protease-antiprotease imbalance, generation of oxidative stress, and chronic inflammation are recognized as the principal mechanisms leading to irreversible airflow obstruction and parenchymal destruction in the lung. Therefore, genes which have been implicated in the pathogenesis of COPD are involved in antiproteolysis, antioxidant barrier and metabolism of xenobiotic substances, inflammatory response to cigarette smoke, airway hyperresponsiveness, and pulmonary vascular remodelling. Significant associations with COPD-related phenotypes have been reported for polymorphisms in genes coding for matrix metalloproteinases, microsomal epoxide hydrolase, glutathione-S-transferases, heme oxygenase, tumor necrosis factor, interleukines 1, 8, and 13, vitamin D-binding protein and β-2-adrenergic receptor (ADRB2), whereas adequately powered replication studies failed to confirm most of the previously observed associations. Genome-wide linkage analyses provide us with a novel tool to identify the general locations of COPD susceptibility genes, and should be followed by association analyses of positional candidate genes from COPD pathophysiology, positional candidate genes selected from gene expression studies, or dense single nucleotide polymorphism panels across regions of linkage. Haplotype analyses of genes with multiple polymorphic sites in linkage disequilibrium, such as the ADRB2 gene, provide another promising field that has yet to be explored in patients with COPD. In the present article we review the |
---|---|
ISSN: | 1336-9563 0006-3088 1336-9563 |
DOI: | 10.2478/s11756-008-0020-4 |