A novel Anti-Cancer Stem Cells compound optimized from the natural symplostatin 4 scaffold inhibits Wnt/β-catenin signaling pathway
Cancer stem cells (CSCs) are responsible for carcinogenesis, cancer progression, relapse, metastasis and drug resistance. Therefore, the development of drug molecules targeting CSCs plays a vital role in medicinal researching field. However, there are extremely rare molecules that selectively ablate...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2018-08, Vol.156, p.21-42 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cancer stem cells (CSCs) are responsible for carcinogenesis, cancer progression, relapse, metastasis and drug resistance. Therefore, the development of drug molecules targeting CSCs plays a vital role in medicinal researching field. However, there are extremely rare molecules that selectively ablate CSCs. The research and development of drugs targeting CSCs is limited due to a lack of anti-CSCs lead compounds. In this study, an anti-CSCs lead compound 35b was discovered, which was derived from the natural chemical scaffold of Symplostatin 4. This compound exhibited a significantly suppressive effect on tumor growth both in vitro and in vivo. Additionally, 35b could significantly reduce the number of melanoma tumor spheres and decrease the percentage of ALDH+ melanoma cells. Further mechanism study illustrated that compound 35b could eliminate the melanoma CSCs by efficiently blocking Wnt/β-catenin signaling pathway. Collectively, our findings would provide a novel chemical scaffold and alternative idea of molecular design for development of anti-CSCs drugs.
[Display omitted]
•Cancer Stem Cells.•Total Synthesis.•Symplostatin 4.•Depsipeptides. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2018.06.046 |