Fluorescence techniques in developmental biology
Advanced fluorescence techniques, commonly known as the F-techniques, measure the kinetics and the interactions of biomolecules with high sensitivity and spatiotemporal resolution. Applications of the F-techniques, which were initially limited to cells, were further extended to study in vivo protein...
Gespeichert in:
Veröffentlicht in: | Journal of biosciences 2018-07, Vol.43 (3), p.541-553 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advanced fluorescence techniques, commonly known as the F-techniques, measure the kinetics and the interactions of biomolecules with high sensitivity and spatiotemporal resolution. Applications of the F-techniques, which were initially limited to cells, were further extended to study
in vivo
protein organization and dynamics in whole organisms. The integration of F-techniques with multi-photon microscopy and light-sheet microscopy widened their applications in the field of developmental biology. It became possible to penetrate the thick tissues of living organisms and obtain good signal-to-noise ratio with reduced photo-induced toxicity. In this review, we discuss the principle and the applications of the three most commonly used F-techniques in developmental biology: Fluorescence Recovery After Photo-bleaching (FRAP), Förster Resonance Energy Transfer (FRET), and Fluorescence Correlation and Cross-Correlation Spectroscopy (FCS and FCCS). |
---|---|
ISSN: | 0250-5991 0973-7138 |
DOI: | 10.1007/s12038-018-9768-z |