Single Molecule Fluorescent Colocalization of Split Aptamers for Ultrasensitive Detection of Biomolecules

Single-molecule fluorescence imaging is a promising strategy for biomolecule detection. However, the accuracy of single-molecule method is often compromised by the false-positive events at the ultralow sample levels that are caused by the nonspecific adsorption of the fluorescent labeled probe and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-08, Vol.90 (15), p.9315-9321
Hauptverfasser: Zhang, Hongding, Liu, Yujie, Zhang, Kun, Ji, Ji, Liu, Jianwei, Liu, Baohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-molecule fluorescence imaging is a promising strategy for biomolecule detection. However, the accuracy of single-molecule method is often compromised by the false-positive events at the ultralow sample levels that are caused by the nonspecific adsorption of the fluorescent labeled probe and other fluorescent impurities on the imaging surface. Here, we demonstrate an ultrasensitive single molecule detection assay based on dual-color fluorescent colocalization of spilt aptamers that was implemented to the measurement of adenosine triphosphate (ATP). The ATP aptamer was split into two fragments and labeled with green and red dye molecules, respectively. When the two probes of split aptamers were brought together by the target ATP molecule, the two colors of fluorescence of two probes were simultaneously detected through two channels and projected to the correlated locations in the two halves of image. The colocalizaiton imaging of two split apatamer probes greatly excluded the false detection of biomolecules that was usually caused by the fluorescent noise of single nonbound aptamer probes and impurities, and further improved the accuracy of measurement. The assay showed excellent selectivity and high sensitivity for ATP detection with linear range of 1 pM to 5 nM and a detection limit of 100 fM. This versatile protocol of single molecule colocalization of split apatamer can be widely applied to the ultrasensitive and highly accurate detection of many types of biomolecules in basic research and biomedical applications.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b01916