Nuclear factor-kappa B activation inhibits proliferation and promotes apoptosis of vascular smooth muscle cells

Objectives To investigate the role of nuclear factor-kappa B (NF-κB) performed in cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs), and to assess the mechanisms. Methods Human aorta VSMCs were divided into control, NF-κB inhibitor, NF-κB overexpression + NF-κB inhibitor, cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vascular 2018-12, Vol.26 (6), p.634-640
Hauptverfasser: Jiao, Lei, Jiang, Ming, Liu, Jun, Wei, Lichao, Wu, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives To investigate the role of nuclear factor-kappa B (NF-κB) performed in cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs), and to assess the mechanisms. Methods Human aorta VSMCs were divided into control, NF-κB inhibitor, NF-κB overexpression + NF-κB inhibitor, control vector + NF-κB inhibitor, NF-κB overexpression, and control vector groups. NF-κB overexpression vector was constructed and transfected into VSMCs. Proliferation of VSMCs in each group was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Apoptosis of VSMCs was detected by flow cytometry. The expression of NF-κB, FasL, and hypertension-related gene (HRG-1) was measured by Western blotting. Results NF-κB overexpression vector was constructed correctly by restriction endonuclease, and the results showed that the activation of NF-κB could inhibit the proliferation of VSMCs. The results of flow cytometry also confirmed that NF-κB overexpression promoted apoptosis of VSMCs. Mechanically, NF-κB overexpression could up-regulate the expression of FasL and HRG-1. Conclusions NF-κB overexpression promotes apoptosis and inhibits cell proliferation of VSMCs. The mechanisms might be regulated by promoting FasL and HRG-1 expression.
ISSN:1708-5381
1708-539X
DOI:10.1177/1708538118787125