Using a Sky Imager for aerosol characterization
The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the pri...
Gespeichert in:
Veröffentlicht in: | Atmospheric environment (1994) 2008-04, Vol.42 (11), p.2739-2745 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2745 |
---|---|
container_issue | 11 |
container_start_page | 2739 |
container_title | Atmospheric environment (1994) |
container_volume | 42 |
creator | Cazorla, A. Olmo, F.J. Alados-Arboledas, L. |
description | The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter
α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network. |
doi_str_mv | 10.1016/j.atmosenv.2007.06.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20695934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231007005808</els_id><sourcerecordid>14858913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4bee5981b6bc9c0168d4300670a3c26a49721a2f0a207b12c30a805b10b695183</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwF1AvcGvnfDRNb6CJj0mTOMDOkZulI6NrR9JNGr-eTBtcd7Et67Ff-yXklkJGgcrRMsN-1QXbbjMGUGQgs9g-IwOqCp4yJcR5rHnOUsYpXJKrEJYAwIuyGJDRLLh2kWDy_rVLJitcWJ_UnU_Q-i50TWI-0aPprXc_2LuuvSYXNTbB3hzzkMyenz7Gr-n07WUyfpymRoDoU1FZm5eKVrIypYnnqLngALIA5IZJFGXBKLIakEFRUWY4oIK8olDJMqeKD8n9Ye_ad98bG3q9csHYpsHWdpugGUSu5OIkSIXKVUl5BOUBNPGz4G2t196t0O80Bb03Ui_1n5F6b6QGqWM7Dt4dFTAYbGqPrXHhf5oBLyWNcUgeDpyNvmyd9ToYZ1tj585b0-t5505J_QIR0YqD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14858913</pqid></control><display><type>article</type><title>Using a Sky Imager for aerosol characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Cazorla, A. ; Olmo, F.J. ; Alados-Arboledas, L.</creator><creatorcontrib>Cazorla, A. ; Olmo, F.J. ; Alados-Arboledas, L.</creatorcontrib><description>The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter
α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2007.06.016</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerosol optical depth ; Analysis methods ; Applied sciences ; Atmospheric pollution ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Neural networks ; Particles and aerosols ; Pollution ; Radial basis networks ; Sky imagery ; Sky radiance</subject><ispartof>Atmospheric environment (1994), 2008-04, Vol.42 (11), p.2739-2745</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-4bee5981b6bc9c0168d4300670a3c26a49721a2f0a207b12c30a805b10b695183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231007005808$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20396120$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cazorla, A.</creatorcontrib><creatorcontrib>Olmo, F.J.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><title>Using a Sky Imager for aerosol characterization</title><title>Atmospheric environment (1994)</title><description>The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter
α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.</description><subject>Aerosol optical depth</subject><subject>Analysis methods</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Particles and aerosols</subject><subject>Pollution</subject><subject>Radial basis networks</subject><subject>Sky imagery</subject><subject>Sky radiance</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwF1AvcGvnfDRNb6CJj0mTOMDOkZulI6NrR9JNGr-eTBtcd7Et67Ff-yXklkJGgcrRMsN-1QXbbjMGUGQgs9g-IwOqCp4yJcR5rHnOUsYpXJKrEJYAwIuyGJDRLLh2kWDy_rVLJitcWJ_UnU_Q-i50TWI-0aPprXc_2LuuvSYXNTbB3hzzkMyenz7Gr-n07WUyfpymRoDoU1FZm5eKVrIypYnnqLngALIA5IZJFGXBKLIakEFRUWY4oIK8olDJMqeKD8n9Ye_ad98bG3q9csHYpsHWdpugGUSu5OIkSIXKVUl5BOUBNPGz4G2t196t0O80Bb03Ui_1n5F6b6QGqWM7Dt4dFTAYbGqPrXHhf5oBLyWNcUgeDpyNvmyd9ToYZ1tj585b0-t5505J_QIR0YqD</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Cazorla, A.</creator><creator>Olmo, F.J.</creator><creator>Alados-Arboledas, L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope></search><sort><creationdate>20080401</creationdate><title>Using a Sky Imager for aerosol characterization</title><author>Cazorla, A. ; Olmo, F.J. ; Alados-Arboledas, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4bee5981b6bc9c0168d4300670a3c26a49721a2f0a207b12c30a805b10b695183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerosol optical depth</topic><topic>Analysis methods</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Particles and aerosols</topic><topic>Pollution</topic><topic>Radial basis networks</topic><topic>Sky imagery</topic><topic>Sky radiance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cazorla, A.</creatorcontrib><creatorcontrib>Olmo, F.J.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cazorla, A.</au><au>Olmo, F.J.</au><au>Alados-Arboledas, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a Sky Imager for aerosol characterization</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>42</volume><issue>11</issue><spage>2739</spage><epage>2745</epage><pages>2739-2745</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter
α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2007.06.016</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1352-2310 |
ispartof | Atmospheric environment (1994), 2008-04, Vol.42 (11), p.2739-2745 |
issn | 1352-2310 1873-2844 |
language | eng |
recordid | cdi_proquest_miscellaneous_20695934 |
source | Elsevier ScienceDirect Journals |
subjects | Aerosol optical depth Analysis methods Applied sciences Atmospheric pollution Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Meteorology Neural networks Particles and aerosols Pollution Radial basis networks Sky imagery Sky radiance |
title | Using a Sky Imager for aerosol characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20Sky%20Imager%20for%20aerosol%20characterization&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Cazorla,%20A.&rft.date=2008-04-01&rft.volume=42&rft.issue=11&rft.spage=2739&rft.epage=2745&rft.pages=2739-2745&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2007.06.016&rft_dat=%3Cproquest_cross%3E14858913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14858913&rft_id=info:pmid/&rft_els_id=S1352231007005808&rfr_iscdi=true |