Using a Sky Imager for aerosol characterization

The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2008-04, Vol.42 (11), p.2739-2745
Hauptverfasser: Cazorla, A., Olmo, F.J., Alados-Arboledas, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2745
container_issue 11
container_start_page 2739
container_title Atmospheric environment (1994)
container_volume 42
creator Cazorla, A.
Olmo, F.J.
Alados-Arboledas, L.
description The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.
doi_str_mv 10.1016/j.atmosenv.2007.06.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20695934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231007005808</els_id><sourcerecordid>14858913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4bee5981b6bc9c0168d4300670a3c26a49721a2f0a207b12c30a805b10b695183</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwF1AvcGvnfDRNb6CJj0mTOMDOkZulI6NrR9JNGr-eTBtcd7Et67Ff-yXklkJGgcrRMsN-1QXbbjMGUGQgs9g-IwOqCp4yJcR5rHnOUsYpXJKrEJYAwIuyGJDRLLh2kWDy_rVLJitcWJ_UnU_Q-i50TWI-0aPprXc_2LuuvSYXNTbB3hzzkMyenz7Gr-n07WUyfpymRoDoU1FZm5eKVrIypYnnqLngALIA5IZJFGXBKLIakEFRUWY4oIK8olDJMqeKD8n9Ye_ad98bG3q9csHYpsHWdpugGUSu5OIkSIXKVUl5BOUBNPGz4G2t196t0O80Bb03Ui_1n5F6b6QGqWM7Dt4dFTAYbGqPrXHhf5oBLyWNcUgeDpyNvmyd9ToYZ1tj585b0-t5505J_QIR0YqD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14858913</pqid></control><display><type>article</type><title>Using a Sky Imager for aerosol characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Cazorla, A. ; Olmo, F.J. ; Alados-Arboledas, L.</creator><creatorcontrib>Cazorla, A. ; Olmo, F.J. ; Alados-Arboledas, L.</creatorcontrib><description>The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2007.06.016</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerosol optical depth ; Analysis methods ; Applied sciences ; Atmospheric pollution ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Neural networks ; Particles and aerosols ; Pollution ; Radial basis networks ; Sky imagery ; Sky radiance</subject><ispartof>Atmospheric environment (1994), 2008-04, Vol.42 (11), p.2739-2745</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-4bee5981b6bc9c0168d4300670a3c26a49721a2f0a207b12c30a805b10b695183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231007005808$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20396120$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cazorla, A.</creatorcontrib><creatorcontrib>Olmo, F.J.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><title>Using a Sky Imager for aerosol characterization</title><title>Atmospheric environment (1994)</title><description>The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.</description><subject>Aerosol optical depth</subject><subject>Analysis methods</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Particles and aerosols</subject><subject>Pollution</subject><subject>Radial basis networks</subject><subject>Sky imagery</subject><subject>Sky radiance</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwF1AvcGvnfDRNb6CJj0mTOMDOkZulI6NrR9JNGr-eTBtcd7Et67Ff-yXklkJGgcrRMsN-1QXbbjMGUGQgs9g-IwOqCp4yJcR5rHnOUsYpXJKrEJYAwIuyGJDRLLh2kWDy_rVLJitcWJ_UnU_Q-i50TWI-0aPprXc_2LuuvSYXNTbB3hzzkMyenz7Gr-n07WUyfpymRoDoU1FZm5eKVrIypYnnqLngALIA5IZJFGXBKLIakEFRUWY4oIK8olDJMqeKD8n9Ye_ad98bG3q9csHYpsHWdpugGUSu5OIkSIXKVUl5BOUBNPGz4G2t196t0O80Bb03Ui_1n5F6b6QGqWM7Dt4dFTAYbGqPrXHhf5oBLyWNcUgeDpyNvmyd9ToYZ1tj585b0-t5505J_QIR0YqD</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Cazorla, A.</creator><creator>Olmo, F.J.</creator><creator>Alados-Arboledas, L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope></search><sort><creationdate>20080401</creationdate><title>Using a Sky Imager for aerosol characterization</title><author>Cazorla, A. ; Olmo, F.J. ; Alados-Arboledas, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4bee5981b6bc9c0168d4300670a3c26a49721a2f0a207b12c30a805b10b695183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerosol optical depth</topic><topic>Analysis methods</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Particles and aerosols</topic><topic>Pollution</topic><topic>Radial basis networks</topic><topic>Sky imagery</topic><topic>Sky radiance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cazorla, A.</creatorcontrib><creatorcontrib>Olmo, F.J.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cazorla, A.</au><au>Olmo, F.J.</au><au>Alados-Arboledas, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a Sky Imager for aerosol characterization</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>42</volume><issue>11</issue><spage>2739</spage><epage>2745</epage><pages>2739-2745</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2007.06.016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 2008-04, Vol.42 (11), p.2739-2745
issn 1352-2310
1873-2844
language eng
recordid cdi_proquest_miscellaneous_20695934
source Elsevier ScienceDirect Journals
subjects Aerosol optical depth
Analysis methods
Applied sciences
Atmospheric pollution
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Meteorology
Neural networks
Particles and aerosols
Pollution
Radial basis networks
Sky imagery
Sky radiance
title Using a Sky Imager for aerosol characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20Sky%20Imager%20for%20aerosol%20characterization&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Cazorla,%20A.&rft.date=2008-04-01&rft.volume=42&rft.issue=11&rft.spage=2739&rft.epage=2745&rft.pages=2739-2745&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2007.06.016&rft_dat=%3Cproquest_cross%3E14858913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14858913&rft_id=info:pmid/&rft_els_id=S1352231007005808&rfr_iscdi=true