Using a Sky Imager for aerosol characterization

The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2008-04, Vol.42 (11), p.2739-2745
Hauptverfasser: Cazorla, A., Olmo, F.J., Alados-Arboledas, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The All-Sky Imager developed by the Atmospheric Physics Group has been tested for aerosol characterization. Different neural network-based models calculate the aerosol optical depth (AOD) for two wavelengths and the Ångström turbidity parameter α using as input parameters data extracted from the principal plane of sky images from the All-Sky Imager. The models use data from a CIMEL CE318 radiometer for training and validation. The deviations between model and reference values are in the range of uncertainties assigned to Aerosol Robotic Network (AERONET) network.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2007.06.016