C, N, O abundances in the most metal-poor damped Lyman alpha systems

This study focuses on some of the most metal-poor damped Lyα (DLA) absorbers known in the spectra of high-redshift QSOs, using new and archival observations obtained with ultraviolet-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the abs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2008-04, Vol.385 (4), p.2011-2024
Hauptverfasser: Pettini, Max, Zych, Berkeley J., Steidel, Charles C., Chaffee, Fred H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on some of the most metal-poor damped Lyα (DLA) absorbers known in the spectra of high-redshift QSOs, using new and archival observations obtained with ultraviolet-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the absorption lines in these systems allow us to measure the abundances of several elements, and in particular those of C, N and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than ∼1/100 of solar, the C/O ratio in high-redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurión and her collaborators in 2003. Both results can be interpreted as evidence for enhanced production of C and N by massive stars in the first few episodes of star formation, in our Galaxy and in the distant protogalaxies seen as QSO absorbers. The higher stellar yields implied may have an origin in stellar rotation which promotes mixing in the stars' interiors, as considered in some recent model calculations. We briefly discuss the relevance of these results to current ideas on the origin of metals in the intergalactic medium and the universality of the stellar initial mass function.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2008.12951.x