Tool for Automated Load Duration Curve Creation

A recent study by the Texas Bacteria Total Maximum Daily Load (TMDL) Task Force has recommended the use of load duration curves as a primary tool in calculating bacterial TMDLs. This method is attractive because it effectively integrates flow regimes into TMDL analyses, clearly communicates data thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2009-06, Vol.45 (3), p.654-663
Hauptverfasser: Johnson, Stephanie L, Whiteaker, Timothy, Maidment, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recent study by the Texas Bacteria Total Maximum Daily Load (TMDL) Task Force has recommended the use of load duration curves as a primary tool in calculating bacterial TMDLs. This method is attractive because it effectively integrates flow regimes into TMDL analyses, clearly communicates data through a method that is understandable to the general public, and has been successfully applied in TMDL studies in other states. To ease the creation of load duration curves, an automated load duration curve creation tool called LDCurve has been created within a Microsoft Excel framework. Web services and a webscraper are used to retrieve U.S. Geological Survey streamflow data and Texas Commission on Environmental Quality water quality data. Data are imported to the spreadsheet, combined to create flow and load duration curves, and plotted. Final steps result in a preliminary estimate of the overall load reductions needed to meet water quality standards in the modeled segment. LDCurve is currently only applicable in the state of Texas, but may be updated to model water quality throughout the nation using analogous web services from the EPA STORET database. By using automated data retrievals and computations, the LDCurve tool reduces the amount of time required to create curves and calculate load reductions to a matter of minutes. LDCurve and all supporting materials are available online for free download at: http://tools.crwr.utexas.edu/LDCurve/.
ISSN:1093-474X
1752-1688
DOI:10.1111/j.1752-1688.2009.00313.x