The contribution of traffic and solvent use to the total NMVOC emission in a German city derived from measurements and CMB modelling

In order to quantify the contribution of solvent use and road traffic to the total non-methane volatile organic compound (NMVOC) emissions in Germany, the composition of air in the city of Wuppertal was investigated during three campaigns at different locations. The measurements covered NMVOCs in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2007-10, Vol.41 (33), p.7108-7126
Hauptverfasser: Niedojadlo, Anita, Becker, Karl Heinz, Kurtenbach, Ralf, Wiesen, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to quantify the contribution of solvent use and road traffic to the total non-methane volatile organic compound (NMVOC) emissions in Germany, the composition of air in the city of Wuppertal was investigated during three campaigns at different locations. The measurements covered NMVOCs in the range of C 3–C 10 hydrocarbons and C 1–C 6 oxygenated compounds. An assessment of the contribution from different emission sources to the observed NMVOC concentrations was attempted with the chemical mass balance (CMB) modelling technique. Emission profiles for traffic were obtained from measurements performed in a traffic tunnel, at a downtown street intersection and during drives through the city and on motorways. Solvent emission profiles were investigated in the vicinity of different factories and workshops using solvents in Wuppertal. Apportionment analyses were performed for several receptor points located down-wind from the city centre, in residential, dense traffic and industrial areas. The results of the present work show that traffic emission rather than solvent use determines the ambient NMVOC composition. The maximum contribution of solvent use to the NMVOC emission estimated on the basis of experimentally obtained results amounts to about 23% in the whole area of Wuppertal. It can be concluded that the contribution of solvent use to the NMVOC concentrations also in other German cities falls in the range of few to about 20%, assuming that Wuppertal can be considered as a typical German urban area with certain proportions of domestic, traffic and various industrial activities. These results are in strong disagreement with the German Emission Inventory, which states, that in the reference year 2003 about 51% of the total NMVOC emissions originate from solvent use and only 14% from traffic.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2007.04.056