Climate change and wildfire in California
Wildfire risks for California under four climatic change scenarios were statistically modeled as functions of climate, hydrology, and topography. Wildfire risks for the GFDL and PCM global climate models and the A2 and B1 emissions scenarios were compared for 2005-2034, 2035-2064, and 2070-2099 agai...
Gespeichert in:
Veröffentlicht in: | Climatic change 2008-03, Vol.87 (1), p.231-249 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wildfire risks for California under four climatic change scenarios were statistically modeled as functions of climate, hydrology, and topography. Wildfire risks for the GFDL and PCM global climate models and the A2 and B1 emissions scenarios were compared for 2005-2034, 2035-2064, and 2070-2099 against a modeled 1961-1990 reference period in California and neighboring states. Outcomes for the GFDL model runs, which exhibit higher temperatures than the PCM model runs, diverged sharply for different kinds of fire regimes, with increased temperatures promoting greater large fire frequency in wetter, forested areas, via the effects of warmer temperatures on fuel flammability. At the same time, reduced moisture availability due to lower precipitation and higher temperatures led to reduced fire risks in some locations where fuel flammability may be less important than the availability of fine fuels. Property damages due to wildfires were also modeled using the 2000 U.S. Census to describe the location and density of residential structures. In this analysis the largest changes in property damages under the climate change scenarios occurred in wildland/urban interfaces proximate to major metropolitan areas in coastal southern California, the Bay Area, and in the Sierra foothills northeast of Sacramento. |
---|---|
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-007-9363-z |