Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H2O2-Activated bubble generating anti-inflammatory polymer particles

Muscles of peripheral artery disease (PAD) patients are under oxidative stress associated with a significantly elevated level of reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Curcumin is a major active constituent of turmeric and is well known for its highly potent antioxidant, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2018-10, Vol.179, p.175-185
Hauptverfasser: Jung, Eunkyeong, Noh, Joungyoun, Kang, Changsun, Yoo, Donghyuck, Song, Chulgyu, Lee, Dongwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muscles of peripheral artery disease (PAD) patients are under oxidative stress associated with a significantly elevated level of reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Curcumin is a major active constituent of turmeric and is well known for its highly potent antioxidant, anti-inflammatory and angiogenic effects. We previously reported antioxidant vanillyl alcohol-incorporated copolyoxalate (PVAX) which is designed to rapidly scavenge H2O2 and release bioactive vanillyl alcohol and CO2 in a H2O2-triggered manner. In this work, we developed curcumin-loaded PVAX (CUR-PVAX) nanoparticles as contrast-enhanced ultrasound imaging agents as well as on-demand therapeutic agents for ischemic injuries based on the hypothesis that PVAX nanoparticles generate echogenic CO2 bubbles through H2O2-triggered oxidation of peroxalate esters and the merger of curcumin and PVAX exerts H2O2-activatable synergistic therapeutic actions. CUR-PVAX nanoparticles also displayed the drastic ultrasound signal in ischemic areas by generating CO2 bubbles. CUR-PVAX nanoparticles exhibited significantly higher antioxidant and anti-inflammatory activities than empty PVAX nanoparticles and equivalent curcumin in vascular endothelial cells. A mouse model of ischemic injury was used to evaluate the potential of CUR-PVAX nanoparticles as ultrasound imaging agents and on-demand therapeutic agents. CUR-PVAX nanoparticles significantly suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Moreover, CUR-PVAX nanoparticles significantly enhanced the level of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (PECAM-1, also known as CD31), leading to blood perfusion into ischemic tissues. We, therefore, believe that CUR-PVAX nanoparticles hold great translational potential as novel theranostic agents for ischemic diseases such as PAD. [Display omitted]
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2018.07.003