Coherent Control of the Rotation Axis of Molecular Superrotors

The control of ultrafast molecular rotational motion has benefited from the development of innovative techniques in strong-field laser physics. Here, we theoretically demonstrate a novel type of coherent control by inducing rotation of an asymmetric-top molecule about two different molecular axes. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-08, Vol.9 (15), p.4206-4209
Hauptverfasser: Owens, A, Yachmenev, A, Küpper, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The control of ultrafast molecular rotational motion has benefited from the development of innovative techniques in strong-field laser physics. Here, we theoretically demonstrate a novel type of coherent control by inducing rotation of an asymmetric-top molecule about two different molecular axes. An optical centrifuge is applied to the hydrogen sulfide (H2S) molecule to create a molecular superrotor, an object performing ultrafast rotation about a well-defined axis. Using two distinct pulse envelopes for the optical centrifuge, we show that H2S can be excited along separate pathways of rotational states. This leads to stable rotation about two entirely different molecular axes while ensuring rotation is about the propagation direction of the centrifuge, i.e., the laboratory-fixed Z-axis. The presented scheme to control the angular momentum alignment of a molecule will, for instance, be useful in studies of molecule–molecule or molecule–surface scattering, especially due to the large amounts of energy associated with superrotors, which can even be controlled by changing the duration of the optical centrifuge pulse.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b01689