Synthesis of spherical Fe3O4 nanoparticles from the thermal decomposition of iron (III) nano-structure complex: DFT studies and evaluation of the biological activity
A novel Fe(III) Schiff base complex of the [FeL2(NO3)2]NO3 type where L = 2-((pyridin-4-yl)methyleneamino)-3-aminomaleonitrile was synthesized using the reflux and sonochemical methods and their antibacterial and antifungal activity were evaluated. The nanoparticles of iron oxide (Fe2O3) were obtain...
Gespeichert in:
Veröffentlicht in: | Bioorganic chemistry 2018-10, Vol.80, p.334-346 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel Fe(III) Schiff base complex of the [FeL2(NO3)2]NO3 type where L = 2-((pyridin-4-yl)methyleneamino)-3-aminomaleonitrile was synthesized using the reflux and sonochemical methods and their antibacterial and antifungal activity were evaluated. The nanoparticles of iron oxide (Fe2O3) were obtained from the iron nano-structure complex as a precursor after calcination at 600 ˚C for 3 h. All the synthesized compounds were characterized by various spectroscopic techniques. The results of SEM showed that the morphology of iron nano-structure complex was rod-like while the morphology of the Fe2O3 nano powder was spherical. The results of the biological studies indicated that the iron nano-structure complex showed a stronger antibacterial and antifungal efficiency than its bulk complex. Finally, the empirical geometrical parameters of complexes revealed a good agreement with calculated ones at DFT-B3LYP level. |
---|---|
ISSN: | 1090-2120 |
DOI: | 10.1016/j.bioorg.2018.07.005 |