Characterization and mass load estimates of organic compounds in agricultural irrigation runoff

Investigations of agricultural chemicals in surface runoff typically target nutrients or specific pesticides; however, numerous other organic compounds are regularly applied to agricultural fields in pesticide formulations, irrigation water, soil amendments and fertilizers. Many of these compounds h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2002-01, Vol.45 (9), p.103-110
Hauptverfasser: PEDERSEN, J. A, YEAGER, M. A, SUFFET, I. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigations of agricultural chemicals in surface runoff typically target nutrients or specific pesticides; however, numerous other organic compounds are regularly applied to agricultural fields in pesticide formulations, irrigation water, soil amendments and fertilizers. Many of these compounds have toxicological significance. We conducted a broad spectrum analysis of surface runoff from individual irrigated agricultural fields in coastal southern California to characterize organic compounds amenable to analysis by gas chromatography-mass spectrometry and to estimate the mass flux of selected chemicals. Aqueous phase extracts contained several pesticides, as well as personal care product ingredients and pharmaceutically active compounds apparently derived from treated wastewater used for irrigation. Several compounds potentially associated with pesticide adjuvants were also present in aqueous phase extracts. Dissolved NOM constituents in water phase extracts included n-fatty acids, aliphatic alcohols and plant terpenoids. Tentatively identified compounds sorbed to suspended particles included pesticides, a fecal sterol, aliphatic and alicyclic hydrocarbons, aliphatic alcohols, aldehydes, and C14 and C16 n-fatty acids and fatty acid esters. Bicyclic and polycyclic aromatic hydrocarbons were identified in both aqueous and suspended particle phases. Constituent concentrations, including total suspended solids (TSS), varied over the course of the sampled events by up to an order of magnitude, and typically were not correlated with flow. Variation in sorbed organic compound concentrations often did not parallel those for TSS concentration. Mass load estimates were strongly influenced by the choice of sampling interval.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2002.0215