Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures

Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kozma, R., Perlovsky, L., Ankishetty, J.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3529
container_issue
container_start_page 3524
container_title
container_volume 10
creator Kozma, R.
Perlovsky, L.
Ankishetty, J.S.
description Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.
doi_str_mv 10.1109/IJCNN.2008.4634301
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_20667894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634301</ieee_id><sourcerecordid>34487878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i237t-310b4b46f8b5a817df4a3b49f0e06dec722d93cee34534ec4517228a0da6be883</originalsourceid><addsrcrecordid>eNqFkU1PwkAQhtevRED_gF725K24H0O7PRoExCBe8Nxs22lZU7a1u03k31sCxqOZZCZ532feZDKE3HE25pzFj8vX6Xo9FoypMYQSJONnZMhBAHAleHhOBn3nAQCLLv4Mpi5_DRnLazJ07pMxIeNYDoh5Ro-ZN7WldUGbtm50qb2xJW222iEtW50btN5RY-lstqDOlFZXjnbuAL3VOVZ0brDK6WaLdbs_xNjaBgvdOWe0pTvz7bsW3Q25KvpFvD3NEfmYzzbTl2D1vlhOn1aBETLygeQshRTCQqUTrXiUF6BlCnHBkIU5ZpEQeSwzRAkTCZjBhPeS0izXYYpKyRF5OOb2x3x16HyyMy7DqtIW684lEkBFff0LChaGkYqhB--PoEHEpGnNTrf75PQB-QNh6Hak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20667894</pqid></control><display><type>conference_proceeding</type><title>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kozma, R. ; Perlovsky, L. ; Ankishetty, J.S.</creator><creatorcontrib>Kozma, R. ; Perlovsky, L. ; Ankishetty, J.S.</creatorcontrib><description>Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634301</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Brain modeling ; Brain models ; Data models ; Electroencephalography ; Equations ; Mathematical model</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3524-3529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27923,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kozma, R.</creatorcontrib><creatorcontrib>Perlovsky, L.</creatorcontrib><creatorcontrib>Ankishetty, J.S.</creatorcontrib><title>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.</description><subject>Adaptation model</subject><subject>Brain modeling</subject><subject>Brain models</subject><subject>Data models</subject><subject>Electroencephalography</subject><subject>Equations</subject><subject>Mathematical model</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqFkU1PwkAQhtevRED_gF725K24H0O7PRoExCBe8Nxs22lZU7a1u03k31sCxqOZZCZ532feZDKE3HE25pzFj8vX6Xo9FoypMYQSJONnZMhBAHAleHhOBn3nAQCLLv4Mpi5_DRnLazJ07pMxIeNYDoh5Ro-ZN7WldUGbtm50qb2xJW222iEtW50btN5RY-lstqDOlFZXjnbuAL3VOVZ0brDK6WaLdbs_xNjaBgvdOWe0pTvz7bsW3Q25KvpFvD3NEfmYzzbTl2D1vlhOn1aBETLygeQshRTCQqUTrXiUF6BlCnHBkIU5ZpEQeSwzRAkTCZjBhPeS0izXYYpKyRF5OOb2x3x16HyyMy7DqtIW684lEkBFff0LChaGkYqhB--PoEHEpGnNTrf75PQB-QNh6Hak</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Kozma, R.</creator><creator>Perlovsky, L.</creator><creator>Ankishetty, J.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7TK</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</title><author>Kozma, R. ; Perlovsky, L. ; Ankishetty, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i237t-310b4b46f8b5a817df4a3b49f0e06dec722d93cee34534ec4517228a0da6be883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation model</topic><topic>Brain modeling</topic><topic>Brain models</topic><topic>Data models</topic><topic>Electroencephalography</topic><topic>Equations</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Kozma, R.</creatorcontrib><creatorcontrib>Perlovsky, L.</creatorcontrib><creatorcontrib>Ankishetty, J.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Neurosciences Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kozma, R.</au><au>Perlovsky, L.</au><au>Ankishetty, J.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3524</spage><epage>3529</epage><pages>3524-3529</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634301</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3524-3529
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_proquest_miscellaneous_20667894
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
Brain modeling
Brain models
Data models
Electroencephalography
Equations
Mathematical model
title Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20propagating%20phase%20gradients%20in%20EEG%20signals%20using%20Model%20Field%20Theory%20of%20non-Gaussian%20mixtures&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Kozma,%20R.&rft.date=2008-06-01&rft.volume=10&rft.spage=3524&rft.epage=3529&rft.pages=3524-3529&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634301&rft_dat=%3Cproquest_6IE%3E34487878%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20667894&rft_id=info:pmid/&rft_ieee_id=4634301&rfr_iscdi=true