Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures
Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3529 |
---|---|
container_issue | |
container_start_page | 3524 |
container_title | |
container_volume | 10 |
creator | Kozma, R. Perlovsky, L. Ankishetty, J.S. |
description | Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data. |
doi_str_mv | 10.1109/IJCNN.2008.4634301 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_20667894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634301</ieee_id><sourcerecordid>34487878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i237t-310b4b46f8b5a817df4a3b49f0e06dec722d93cee34534ec4517228a0da6be883</originalsourceid><addsrcrecordid>eNqFkU1PwkAQhtevRED_gF725K24H0O7PRoExCBe8Nxs22lZU7a1u03k31sCxqOZZCZ532feZDKE3HE25pzFj8vX6Xo9FoypMYQSJONnZMhBAHAleHhOBn3nAQCLLv4Mpi5_DRnLazJ07pMxIeNYDoh5Ro-ZN7WldUGbtm50qb2xJW222iEtW50btN5RY-lstqDOlFZXjnbuAL3VOVZ0brDK6WaLdbs_xNjaBgvdOWe0pTvz7bsW3Q25KvpFvD3NEfmYzzbTl2D1vlhOn1aBETLygeQshRTCQqUTrXiUF6BlCnHBkIU5ZpEQeSwzRAkTCZjBhPeS0izXYYpKyRF5OOb2x3x16HyyMy7DqtIW684lEkBFff0LChaGkYqhB--PoEHEpGnNTrf75PQB-QNh6Hak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20667894</pqid></control><display><type>conference_proceeding</type><title>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kozma, R. ; Perlovsky, L. ; Ankishetty, J.S.</creator><creatorcontrib>Kozma, R. ; Perlovsky, L. ; Ankishetty, J.S.</creatorcontrib><description>Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634301</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Brain modeling ; Brain models ; Data models ; Electroencephalography ; Equations ; Mathematical model</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3524-3529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27923,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kozma, R.</creatorcontrib><creatorcontrib>Perlovsky, L.</creatorcontrib><creatorcontrib>Ankishetty, J.S.</creatorcontrib><title>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.</description><subject>Adaptation model</subject><subject>Brain modeling</subject><subject>Brain models</subject><subject>Data models</subject><subject>Electroencephalography</subject><subject>Equations</subject><subject>Mathematical model</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqFkU1PwkAQhtevRED_gF725K24H0O7PRoExCBe8Nxs22lZU7a1u03k31sCxqOZZCZ532feZDKE3HE25pzFj8vX6Xo9FoypMYQSJONnZMhBAHAleHhOBn3nAQCLLv4Mpi5_DRnLazJ07pMxIeNYDoh5Ro-ZN7WldUGbtm50qb2xJW222iEtW50btN5RY-lstqDOlFZXjnbuAL3VOVZ0brDK6WaLdbs_xNjaBgvdOWe0pTvz7bsW3Q25KvpFvD3NEfmYzzbTl2D1vlhOn1aBETLygeQshRTCQqUTrXiUF6BlCnHBkIU5ZpEQeSwzRAkTCZjBhPeS0izXYYpKyRF5OOb2x3x16HyyMy7DqtIW684lEkBFff0LChaGkYqhB--PoEHEpGnNTrf75PQB-QNh6Hak</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Kozma, R.</creator><creator>Perlovsky, L.</creator><creator>Ankishetty, J.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7TK</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</title><author>Kozma, R. ; Perlovsky, L. ; Ankishetty, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i237t-310b4b46f8b5a817df4a3b49f0e06dec722d93cee34534ec4517228a0da6be883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation model</topic><topic>Brain modeling</topic><topic>Brain models</topic><topic>Data models</topic><topic>Electroencephalography</topic><topic>Equations</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Kozma, R.</creatorcontrib><creatorcontrib>Perlovsky, L.</creatorcontrib><creatorcontrib>Ankishetty, J.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Neurosciences Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kozma, R.</au><au>Perlovsky, L.</au><au>Ankishetty, J.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3524</spage><epage>3529</epage><pages>3524-3529</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634301</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3524-3529 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_proquest_miscellaneous_20667894 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation model Brain modeling Brain models Data models Electroencephalography Equations Mathematical model |
title | Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20propagating%20phase%20gradients%20in%20EEG%20signals%20using%20Model%20Field%20Theory%20of%20non-Gaussian%20mixtures&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Kozma,%20R.&rft.date=2008-06-01&rft.volume=10&rft.spage=3524&rft.epage=3529&rft.pages=3524-3529&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634301&rft_dat=%3Cproquest_6IE%3E34487878%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20667894&rft_id=info:pmid/&rft_ieee_id=4634301&rfr_iscdi=true |