Detection of propagating phase gradients in EEG signals using Model Field Theory of non-Gaussian mixtures
Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model field theory (MFT) is a powerful tool of pattern recognition, which has been used successfully for various tasks involving noisy data and high level of clutter. Detection of spatio-temporal activity patterns in EEG experiments is a very challenging task and it is well-suited for MFT implementation. Previous work on applying MFT for EEG analysis used Gaussian assumption on the mixture components. The present work uses non-Gaussian components for the description of propagating phase-cones, which are more realistic models of the experimentally observed physiological processes. This work introduces MFT equations for non-Gaussian transient processes, and describes the identification algorithm. The method is demonstrated using simulated phase cone data. |
---|---|
ISSN: | 2161-4393 1522-4899 2161-4407 |
DOI: | 10.1109/IJCNN.2008.4634301 |