Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface

In order to characterize the non-Gaussian information contained within the EEG signals, a new feature extraction method based on bispectrum is proposed and applied to the classification of right and left motor imagery for developing EEG-based brain–computer interface systems. The experimental result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2008-03, Vol.178 (6), p.1629-1640
Hauptverfasser: Zhou, Shang-Ming, Gan, John Q., Sepulveda, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to characterize the non-Gaussian information contained within the EEG signals, a new feature extraction method based on bispectrum is proposed and applied to the classification of right and left motor imagery for developing EEG-based brain–computer interface systems. The experimental results on the Graz BCI data set have shown that based on the proposed features, a LDA classifier, SVM classifier and NN classifier outperform the winner of the BCI 2003 competition on the same data set in terms of either the mutual information, the competition criterion, or misclassification rate.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2007.11.012