Observed Interannual Variability of the Florida Current : Wind Forcing and the North Atlantic Oscillation
The role of wind stress curl (WSC) forcing in the observed interannual variability of the Florida Current (FC) transport is investigated. Evidence is provided for baroclinic adjustment as a physical mechanism linking interannual changes in WSC forcing and changes in the circulation of the North Atla...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2009-03, Vol.39 (3), p.721-736 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The role of wind stress curl (WSC) forcing in the observed interannual variability of the Florida Current (FC) transport is investigated. Evidence is provided for baroclinic adjustment as a physical mechanism linking interannual changes in WSC forcing and changes in the circulation of the North Atlantic subtropical gyre. A continuous monthly time series of FC transport is constructed using daily transports estimated from undersea telephone cables near 27°N in the Straits of Florida. This 25-yr-long time series is linearly regressed against interannual WSC variability derived from the NCEP–NCAR reanalysis. The results indicate that a substantial fraction of the FC transport variability at 3–12-yr periods is explained by low-frequency WSC variations. A lagged regression analysis is performed to explore hypothetical adjustment times of the wind-driven circulation. The estimated lag times are at least 2 times faster than those predicted by linear beta-plane planetary wave theory. Possible reasons for this discrepancy are discussed within the context of recent observational and theoretical developments. The results are then linked with earlier findings of a low-frequency anticorrelation between FC transport and the North Atlantic Oscillation (NAO) index, showing that this relationship could result from the positive (negative) WSC anomalies that develop between 20° and 30°N in the western North Atlantic during high (low) NAO phases. Ultimately, the observed role of wind forcing on the interannual variability of the FC could represent a benchmark for current efforts to monitor and predict the North Atlantic circulation. |
---|---|
ISSN: | 0022-3670 1520-0485 |
DOI: | 10.1175/2008JPO4001.1 |