Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure

Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2018-10, Vol.248 (4), p.947-962
Hauptverfasser: Khan, Mueen Alam, Tong, Fei, Wang, Wubin, He, Jianbo, Zhao, Tuanjie, Gai, Junyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 4
container_start_page 947
container_title Planta
container_volume 248
creator Khan, Mueen Alam
Tong, Fei
Wang, Wubin
He, Jianbo
Zhao, Tuanjie
Gai, Junyi
description Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) = 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL–environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52–41.65 %), plus genetic variation (46.90–58.40%) in a total of 88.55–95.92% PV. The identified QTLs–alleles were organized into main-effect and QEI-effect QTL–allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098–1.132, transgressive over the parents (0.651–0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL–allele-based genomic selection for optimal cross selection.
doi_str_mv 10.1007/s00425-018-2952-4
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2066485716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48727035</jstor_id><sourcerecordid>48727035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f07bd94d8f83694e5b17b675e740348fc71cc991330a38cbfc474370ceef6bb43</originalsourceid><addsrcrecordid>eNp9kU9u1DAYxS0EotPCAViALLEpiwz-GyfLUUUHpEEIUcQCochxvgwZeezUThDZcQduw3E4CQ4pRWLBypa_33vP9kPoESVrSoh6HgkRTGaEFhkrJcvEHbSigrOMEVHcRStC0p6UXJ6g0xgPhKShUvfRCSvLghRSrtCPjdN2il3EvsVvr3Y_v33X1oIFHKc4wBEb71oIoXN73AQ_7j8PePAWgnYGsB5wBGjsPI2D3gPuHNbYQZI2WMfoTaeHzjt81H0_U73vR7scpcDopxq0wx-3djKdg4R9xee79TP8OmWuP-ExzqLk6L-AxdsPm3e4D95AMwZ4gO612kZ4eLOeofeXL64uXma7N9tXF5tdZngphqwlqm5K0RRtwfNSgKypqnMlQQnCRdEaRY0pS8o50bwwdWuESt9EDECb17XgZ-h88U3J12N6WnXsogFrtQM_xoqRPBeFVDRP6NN_0IMfQ_rh35Skiio2U3ShTPAxBmirPnRHHaaKkmoutlqKrVKx1VxsNV_iyY3zWB-huVX8aTIBbAFiP5cF4W_0_1wfL6JDHHy4NRWFYopwyX8B1qK6ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065171726</pqid></control><display><type>article</type><title>Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Khan, Mueen Alam ; Tong, Fei ; Wang, Wubin ; He, Jianbo ; Zhao, Tuanjie ; Gai, Junyi</creator><creatorcontrib>Khan, Mueen Alam ; Tong, Fei ; Wang, Wubin ; He, Jianbo ; Zhao, Tuanjie ; Gai, Junyi</creatorcontrib><description>Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) = 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL–environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52–41.65 %), plus genetic variation (46.90–58.40%) in a total of 88.55–95.92% PV. The identified QTLs–alleles were organized into main-effect and QEI-effect QTL–allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098–1.132, transgressive over the parents (0.651–0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL–allele-based genomic selection for optimal cross selection.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-018-2952-4</identifier><identifier>PMID: 29980855</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Alleles ; Biological activity ; Biomedical and Life Sciences ; Chromosome Mapping ; Crop production ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Drought ; Drought resistance ; Droughts ; Ecology ; Forestry ; Gene frequency ; Gene mapping ; Genes ; Genetic diversity ; Genome-Wide Association Study ; Genotype ; Genotype &amp; phenotype ; Genotypes ; Glycine max ; Glycine max - genetics ; Glycine max - physiology ; Inbreeding ; Life Sciences ; Linkage Disequilibrium ; Mapping ; Molecular chains ; Molecular Sequence Annotation ; Nucleotide sequence ; ORIGINAL ARTICLE ; Parents ; Phenotype ; Phenotypes ; Plant Sciences ; Polyethylene glycol ; Polyethylenes ; Polymorphism, Single Nucleotide - genetics ; Population ; Population genetics ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Seedlings ; Seedlings - genetics ; Seedlings - physiology ; Sequence Analysis, DNA ; Single-nucleotide polymorphism ; Soybeans</subject><ispartof>Planta, 2018-10, Vol.248 (4), p.947-962</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Planta is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f07bd94d8f83694e5b17b675e740348fc71cc991330a38cbfc474370ceef6bb43</citedby><cites>FETCH-LOGICAL-c394t-f07bd94d8f83694e5b17b675e740348fc71cc991330a38cbfc474370ceef6bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48727035$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48727035$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29980855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Mueen Alam</creatorcontrib><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Wang, Wubin</creatorcontrib><creatorcontrib>He, Jianbo</creatorcontrib><creatorcontrib>Zhao, Tuanjie</creatorcontrib><creatorcontrib>Gai, Junyi</creatorcontrib><title>Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) = 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL–environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52–41.65 %), plus genetic variation (46.90–58.40%) in a total of 88.55–95.92% PV. The identified QTLs–alleles were organized into main-effect and QEI-effect QTL–allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098–1.132, transgressive over the parents (0.651–0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL–allele-based genomic selection for optimal cross selection.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosome Mapping</subject><subject>Crop production</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Gene frequency</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genome-Wide Association Study</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>Glycine max - physiology</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Mapping</subject><subject>Molecular chains</subject><subject>Molecular Sequence Annotation</subject><subject>Nucleotide sequence</subject><subject>ORIGINAL ARTICLE</subject><subject>Parents</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant Sciences</subject><subject>Polyethylene glycol</subject><subject>Polyethylenes</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population</subject><subject>Population genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seedlings - physiology</subject><subject>Sequence Analysis, DNA</subject><subject>Single-nucleotide polymorphism</subject><subject>Soybeans</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9u1DAYxS0EotPCAViALLEpiwz-GyfLUUUHpEEIUcQCochxvgwZeezUThDZcQduw3E4CQ4pRWLBypa_33vP9kPoESVrSoh6HgkRTGaEFhkrJcvEHbSigrOMEVHcRStC0p6UXJ6g0xgPhKShUvfRCSvLghRSrtCPjdN2il3EvsVvr3Y_v33X1oIFHKc4wBEb71oIoXN73AQ_7j8PePAWgnYGsB5wBGjsPI2D3gPuHNbYQZI2WMfoTaeHzjt81H0_U73vR7scpcDopxq0wx-3djKdg4R9xee79TP8OmWuP-ExzqLk6L-AxdsPm3e4D95AMwZ4gO612kZ4eLOeofeXL64uXma7N9tXF5tdZngphqwlqm5K0RRtwfNSgKypqnMlQQnCRdEaRY0pS8o50bwwdWuESt9EDECb17XgZ-h88U3J12N6WnXsogFrtQM_xoqRPBeFVDRP6NN_0IMfQ_rh35Skiio2U3ShTPAxBmirPnRHHaaKkmoutlqKrVKx1VxsNV_iyY3zWB-huVX8aTIBbAFiP5cF4W_0_1wfL6JDHHy4NRWFYopwyX8B1qK6ag</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Khan, Mueen Alam</creator><creator>Tong, Fei</creator><creator>Wang, Wubin</creator><creator>He, Jianbo</creator><creator>Zhao, Tuanjie</creator><creator>Gai, Junyi</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20181001</creationdate><title>Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure</title><author>Khan, Mueen Alam ; Tong, Fei ; Wang, Wubin ; He, Jianbo ; Zhao, Tuanjie ; Gai, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f07bd94d8f83694e5b17b675e740348fc71cc991330a38cbfc474370ceef6bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosome Mapping</topic><topic>Crop production</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Gene frequency</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genome-Wide Association Study</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>Glycine max - physiology</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Mapping</topic><topic>Molecular chains</topic><topic>Molecular Sequence Annotation</topic><topic>Nucleotide sequence</topic><topic>ORIGINAL ARTICLE</topic><topic>Parents</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant Sciences</topic><topic>Polyethylene glycol</topic><topic>Polyethylenes</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population</topic><topic>Population genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seedlings - physiology</topic><topic>Sequence Analysis, DNA</topic><topic>Single-nucleotide polymorphism</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Mueen Alam</creatorcontrib><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Wang, Wubin</creatorcontrib><creatorcontrib>He, Jianbo</creatorcontrib><creatorcontrib>Zhao, Tuanjie</creatorcontrib><creatorcontrib>Gai, Junyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Mueen Alam</au><au>Tong, Fei</au><au>Wang, Wubin</au><au>He, Jianbo</au><au>Zhao, Tuanjie</au><au>Gai, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>248</volume><issue>4</issue><spage>947</spage><epage>962</epage><pages>947-962</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) = 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL–environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52–41.65 %), plus genetic variation (46.90–58.40%) in a total of 88.55–95.92% PV. The identified QTLs–alleles were organized into main-effect and QEI-effect QTL–allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098–1.132, transgressive over the parents (0.651–0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL–allele-based genomic selection for optimal cross selection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>29980855</pmid><doi>10.1007/s00425-018-2952-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2018-10, Vol.248 (4), p.947-962
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2066485716
source Jstor Complete Legacy; MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
Biological activity
Biomedical and Life Sciences
Chromosome Mapping
Crop production
Deoxyribonucleic acid
DNA
DNA sequencing
Drought
Drought resistance
Droughts
Ecology
Forestry
Gene frequency
Gene mapping
Genes
Genetic diversity
Genome-Wide Association Study
Genotype
Genotype & phenotype
Genotypes
Glycine max
Glycine max - genetics
Glycine max - physiology
Inbreeding
Life Sciences
Linkage Disequilibrium
Mapping
Molecular chains
Molecular Sequence Annotation
Nucleotide sequence
ORIGINAL ARTICLE
Parents
Phenotype
Phenotypes
Plant Sciences
Polyethylene glycol
Polyethylenes
Polymorphism, Single Nucleotide - genetics
Population
Population genetics
Quantitative trait loci
Quantitative Trait Loci - genetics
Seedlings
Seedlings - genetics
Seedlings - physiology
Sequence Analysis, DNA
Single-nucleotide polymorphism
Soybeans
title Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20QTL%E2%80%93allele%20system%20conferring%20drought%20tolerance%20at%20seedling%20stage%20in%20a%20nested%20association%20mapping%20population%20of%20soybean%20%5BGlycine%20max%20(L.)%20Merr.%5D%20using%20a%20novel%20GWAS%20procedure&rft.jtitle=Planta&rft.au=Khan,%20Mueen%20Alam&rft.date=2018-10-01&rft.volume=248&rft.issue=4&rft.spage=947&rft.epage=962&rft.pages=947-962&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-018-2952-4&rft_dat=%3Cjstor_proqu%3E48727035%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065171726&rft_id=info:pmid/29980855&rft_jstor_id=48727035&rfr_iscdi=true