Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure

Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2018-10, Vol.248 (4), p.947-962
Hauptverfasser: Khan, Mueen Alam, Tong, Fei, Wang, Wubin, He, Jianbo, Zhao, Tuanjie, Gai, Junyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and Zheng-Yang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) = 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL–environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52–41.65 %), plus genetic variation (46.90–58.40%) in a total of 88.55–95.92% PV. The identified QTLs–alleles were organized into main-effect and QEI-effect QTL–allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098–1.132, transgressive over the parents (0.651–0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL–allele-based genomic selection for optimal cross selection.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-018-2952-4