Unusual high thermal conductivity in boron arsenide bulk crystals

Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-08, Vol.361 (6402), p.582-585
Hauptverfasser: Tian, Fei, Song, Bai, Chen, Xi, Ravichandran, Navaneetha K, Lv, Yinchuan, Chen, Ke, Sullivan, Sean, Kim, Jaehyun, Zhou, Yuanyuan, Liu, Te-Huan, Goni, Miguel, Ding, Zhiwei, Sun, Jingying, Udalamatta Gamage, Geethal Amila Gamage, Sun, Haoran, Ziyaee, Hamidreza, Huyan, Shuyuan, Deng, Liangzi, Zhou, Jianshi, Schmidt, Aaron J, Chen, Shuo, Chu, Ching-Wu, Huang, Pinshane Y, Broido, David, Shi, Li, Chen, Gang, Ren, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local room-temperature thermal conductivity exceeding 1000 watts per meter-kelvin and an average bulk value reaching 900 watts per meter-kelvin in bulk boron arsenide (BAs) crystals, where boron and arsenic are light and heavy elements, respectively. The high values are consistent with a proposal for phonon-band engineering and can only be explained by higher-order phonon processes. These findings yield insight into the physics of heat conduction in solids and show BAs to be the only known semiconductor with ultrahigh thermal conductivity.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aat7932