Conservation of Marine Megafauna through Minimization of Fisheries Bycatch
Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long-lived animals, efforts must be prioritized according to feasibility and the degree to...
Gespeichert in:
Veröffentlicht in: | Conservation biology 2009-06, Vol.23 (3), p.608-616 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long-lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of "compensatory mitigation" in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals. Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations--fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population-level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation. |
---|---|
ISSN: | 0888-8892 1523-1739 |
DOI: | 10.1111/j.1523-1739.2009.01172.x |