Analysis of Mean Climate Conditions in Senegal (1971–98)

This paper presents a GIS-based analysis of climate variability over Senegal, West Africa. It responds to the need for developing a climate atlas that uses local observations instead of gridded global analyses. Monthly readings of observed rainfall (20 stations) and mean temperature (12 stations) we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth interactions 2006-01, Vol.10 (5), p.1-40
Hauptverfasser: Fall, Souleymane, Niyogi, Dev, Semazzi, Fredrick H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a GIS-based analysis of climate variability over Senegal, West Africa. It responds to the need for developing a climate atlas that uses local observations instead of gridded global analyses. Monthly readings of observed rainfall (20 stations) and mean temperature (12 stations) were compiled, digitized, and quality assured for a period from 1971 to 1998. The monthly, seasonal, and annual temperature and precipitation distributions were mapped and analyzed using ArcGIS Spatial Analyst. A north–south gradient in rainfall and an east–west gradient in temperature variations were observed. June exhibits the greatest variability for both quantity of rainfall and number of rainy days, especially in the western and northern parts of the country. Trends in precipitation and temperature were studied using a linear regression analysis and interpolation maps. Air temperature showed a positive and significant warming trend throughout the country, except in the southeast. A significant correlation is found between the temperature index for Senegal and the Pacific sea surface temperatures during the January–April period, especially in the El Niño zone. In contrast to earlier regional-scale studies, precipitation does not show a negative trend and has remained largely unchanged, with a few locations showing a positive trend, particularly in the northeastern and southwestern regions. This study reveals a need for more localized climate analyses of the West Africa region because local climate variations are not always captured by large-scale analysis, and such variations can alter conclusions related to regional climate change.
ISSN:1087-3562
1087-3562
DOI:10.1175/EI158.1