Regional Characterization of Pasture Changes through Time and Space in Rondônia, Brazil

Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. Regional analysis of pasture dynamic patterns was conducted using high-frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth interactions 2007-09, Vol.11 (14), p.1-25
Hauptverfasser: Numata, Izaya, Roberts, Dar A, Sawada, Yoshito, Chadwick, Oliver A, Schimel, Joshua P, Soares, João V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. Regional analysis of pasture dynamic patterns was conducted using high-frequency temporal satellite data and ancillary data to better understand pasture degradation under varied soil, environmental, and pasture management conditions in the state of Rondônia, Brazil. The 10-day normalized difference vegetation index (NDVI) composite derived from Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m resolution was used to characterize different grass phenological patterns for 32 counties in Rondônia between 2001 and 2003. Six pasture greenness classes showed that high greenness pasture classes dominated in young pastures, while low greenness pasture classes were least common. As pastures aged, the proportion of high greenness pasture classes decreased and the proportion of low greenness pastures increased, indicating a decrease in forage productivity over time in Rondônia. The magnitude of productivity decline depended on environmental constraints and land use systems. To refine this analysis, trajectories of pasture change were determined using spectral mixture analysis applied to Landsat time series data from 1988 to 2001 with the focus on two counties that show contrasting patterns of potential of grass production: Pimenteira, representing the “degraded” pasture category, and Governador Jorge Teixeira, as the “productive” pasture category. The results revealed a clear pasture degradation pattern in Pimenteira, related to low soil fertility and dry climate conditions, while Governador Jorge Teixeira, with better soil fertility and intermediate precipitation, did not show signs of pasture degradation through time.
ISSN:1087-3562
1087-3562
DOI:10.1175/EI232.1