Effect of copolymer sequence on structure and relaxation times near a nanoparticle surface

We simulate a simple nanocomposite consisting of a single spherical nanoparticle surrounded by coarse-grained polymer chains. The polymers are composed of two different monomer types that differ only in their interaction strengths with the nanoparticle. We examine the effect of adjusting copolymer s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2018, Vol.14 (28), p.5913-5921
Hauptverfasser: Trazkovich, Alex J, Wendt, Mitchell F, Hall, Lisa M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We simulate a simple nanocomposite consisting of a single spherical nanoparticle surrounded by coarse-grained polymer chains. The polymers are composed of two different monomer types that differ only in their interaction strengths with the nanoparticle. We examine the effect of adjusting copolymer sequence on the structure as well as the end-to-end vector autocorrelation, bond vector autocorrelation, and self-intermediate scattering function relaxation times as a function of distance from the nanoparticle surface. We show how the range and magnitude of the interphase of slowed dynamics surrounding the nanoparticle depend strongly on sequence blockiness. We find that, depending on block length, blocky copolymers can have faster or slower dynamics than a random copolymer. Certain blocky copolymer sequences lead to relaxation times near the nanoparticle surface that are slower than those of either homopolymer system. Thus, tuning copolymer sequence could allow for significant control over the nanocomposite behavior.
ISSN:1744-683X
1744-6848
DOI:10.1039/c8sm00976g