Rearrangement of Hydroxylated Pinene Derivatives to Fenchone-Type Frameworks: Computational Evidence for Dynamically-Controlled Selectivity

An acid-catalyzed Prins/semipinacol rearrangement cascade reaction of hydroxylated pinene derivatives that leads to tricyclic fenchone-type scaffolds in very high yields and diastereoselectivity has been developed. Quantum chemical analysis of the selectivity-determining step provides support for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-07, Vol.140 (29), p.9291-9298
Hauptverfasser: Blümel, Marcus, Nagasawa, Shota, Blackford, Katherine, Hare, Stephanie R, Tantillo, Dean J, Sarpong, Richmond
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An acid-catalyzed Prins/semipinacol rearrangement cascade reaction of hydroxylated pinene derivatives that leads to tricyclic fenchone-type scaffolds in very high yields and diastereoselectivity has been developed. Quantum chemical analysis of the selectivity-determining step provides support for the existence of an extremely flat potential energy surface around the transition state structure. This transition state structure appears to be ambimodal, i.e., the fenchone-type tricyclic scaffolds are formed in preference to the competing formation of a bornyl (camphor-type) skeleton under dynamic control via a post-transition state bifurcation (PTSB).
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b05804