Deciphering B-ZIP transcription factor interactions in vitro and in vivo

Over the last 15 years, numerous studies have addressed the structural rules that regulate dimerization stability and dimerization specificity of the leucine zipper, a dimeric parallel coiled-coil domain that can either homodimerize or heterodimerize. Initially, these studies were performed with a l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2006-01, Vol.1759 (1), p.4-12
Hauptverfasser: Vinson, Charles, Acharya, Asha, Taparowsky, Elizabeth J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the last 15 years, numerous studies have addressed the structural rules that regulate dimerization stability and dimerization specificity of the leucine zipper, a dimeric parallel coiled-coil domain that can either homodimerize or heterodimerize. Initially, these studies were performed with a limited set of B-ZIP proteins, sequence-specific DNA binding proteins that dimerize using the leucine zipper domain to bind DNA. A global analysis of B-ZIP leucine zipper dimerization properties can be rationalized using a limited number of structural rules [J.R. Newman, A.E. Keating, Comprehensive identification of human bZIP interactions with coiled-coil arrays, Science 300 (2003) 2097–2101]. Today, however, access to the genomic sequences of many different organisms has made possible the annotation of all B-ZIP proteins from several species and has generated a bank of data that can be used to refine, and potentially expand, these rules. Already, a comparative analysis of the B-ZIP proteins from Arabidopsis thaliana and Homo sapiens has revealed that the same amino acids are used in different patterns to generate diverse B-ZIP dimerization patterns [C.D. Deppmann, A. Acharya, V. Rishi, B. Wobbes, S. Smeekens, E.J. Taparowsky, C. Vinson, Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs, Nucleic Acids Res. 32 (2004) 3435–3445]. The challenge ahead is to investigate the biological significance of different B-ZIP protein–protein interactions. Gaining insight at this level will rely on ongoing investigations to (a) define the role of target DNA on modulating B-ZIP dimerization partners, (b) characterize the B-ZIP transcriptome in various cells and tissues through mRNA microarray analysis, (c) identify the genomic localization of B-ZIP binding at a genomic level using the chromatin immunoprecipitation assay, and (d) develop more sophisticated imaging technologies to visualize dimer dynamics in single cells and whole organisms. Studies of B-ZIP family leucine zipper dimerization and the regulatory mechanisms that control their biological activities could serve as a paradigm for deciphering the biophysical and biological parameters governing other well-characterized protein–protein interaction motifs. This review will focus on the dimerization specificity of coiled-coil proteins, particularly the human B-ZIP transcription family that consists of 53 proteins that use the leucine zipper coiled-coil as a di
ISSN:0167-4781
0006-3002
1879-2634
DOI:10.1016/j.bbaexp.2005.12.005