Neural network time series forecasting of finite-element mesh adaptation

Basic learning algorithms and the neural network model are applied to the problem of mesh adaptation for the finite-element method for solving time-dependent partial differential equations. Time series prediction via the neural network methodology is used to predict the areas of “interest” in order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2005, Vol.63, p.447-463
Hauptverfasser: Manevitz, Larry, Bitar, Akram, Givoli, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Basic learning algorithms and the neural network model are applied to the problem of mesh adaptation for the finite-element method for solving time-dependent partial differential equations. Time series prediction via the neural network methodology is used to predict the areas of “interest” in order to obtain an effective mesh refinement at the appropriate times. This allows for increased numerical accuracy with the same computational resources as compared with more “traditional” methods.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2004.06.009