Convergent gradient ascent with momentum in general-sum games
We discuss the recent work in policy gradient learning in general-sum games, and address the drawbacks in policy convergence of algorithms such as IGA and WOLF-IGA. We propose a novel learning algorithm M-IGA by adding momentum terms to policy iterations. M-IGA is guaranteed to converge to Nash equi...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2004-10, Vol.61, p.449-454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the recent work in policy gradient learning in general-sum games, and address the drawbacks in policy convergence of algorithms such as IGA and WOLF-IGA. We propose a novel learning algorithm M-IGA by adding momentum terms to policy iterations. M-IGA is guaranteed to converge to Nash equilibrium policies against a M-IGA learner. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2004.04.003 |