Latent Space Purification via Neural Density Operators
Machine learning is actively being explored for its potential to design, validate, and even hybridize with near-term quantum devices. A central question is whether neural networks can provide a tractable representation of a given quantum state of interest. When true, stochastic neural networks can b...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-06, Vol.120 (24), p.240503-240503, Article 240503 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning is actively being explored for its potential to design, validate, and even hybridize with near-term quantum devices. A central question is whether neural networks can provide a tractable representation of a given quantum state of interest. When true, stochastic neural networks can be employed for many unsupervised tasks, including generative modeling and state tomography. However, to be applicable for real experiments, such methods must be able to encode quantum mixed states. Here, we parametrize a density matrix based on a restricted Boltzmann machine that is capable of purifying a mixed state through auxiliary degrees of freedom embedded in the latent space of its hidden units. We implement the algorithm numerically and use it to perform tomography on some typical states of entangled photons, achieving fidelities competitive with standard techniques. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.120.240503 |