Post-mining deterioration of bauxite overburdens in Jamaica: storage methods or subsoil dilution?

Rapid degradation of disturbed soil from a karst bauxite mine in Jamaica was recorded. Substantial macronutrient losses were incurred during a short (1 month) or a long (12 months) storage of the replaced topsoils during frequent wet/dry changes. The results suggested very high rates (>70% in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2008-03, Vol.54 (1), p.111-115
Hauptverfasser: Harris, Mark A., Omoregie, Samson N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid degradation of disturbed soil from a karst bauxite mine in Jamaica was recorded. Substantial macronutrient losses were incurred during a short (1 month) or a long (12 months) storage of the replaced topsoils during frequent wet/dry changes. The results suggested very high rates (>70% in the first year) of soil degradation from storage, alongside moderate rates (30%) within the same storage dump. However, higher levels of soil organic matter (SOM) were indicated just below the surface, compared with the surface horizons. It was unlikely that under a high leaching humid tropical rainfall regime, natural degradation processes could have re-emplaced such material firmly intact in the 15–30 cm zone. It was therefore concluded that these SOM anomalies were due to mechanical dilution of surface soil with subsoil material during overburden removal and emplacement rather than from long storage. Increasing the soil organic content during storage could be one corrective approach. However, it is far less costly to exercise greater care to apply more precise overburden removal and emplacement techniques initially, than it is to correct the results of topsoil contamination with subsoil. Although this study was limited to one mine, in the context of imminent large-scale mining expansion and current practices, further investigations are needed to accurately ascertain the proportion of similar subsoil contamination in other bauxite-mined sites.
ISSN:0943-0105
1866-6280
1432-0495
1866-6299
DOI:10.1007/s00254-007-0798-3