Multimoment convecting flux tube model of the polar wind system with return current and microprocesses

Multimoment fluid simulation frameworks, which effectively account for anomalous transport due to microprocesses, combine best features of small-scale kinetic and global-scale MHD models. The most practical models of this type, 1D flux tube models, have been successfully used for realistic simulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and solar-terrestrial physics 2007-11, Vol.69 (16), p.2071-2080
Hauptverfasser: Banerjee, Supriya, Gavrishchaka, Valeriy V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multimoment fluid simulation frameworks, which effectively account for anomalous transport due to microprocesses, combine best features of small-scale kinetic and global-scale MHD models. The most practical models of this type, 1D flux tube models, have been successfully used for realistic simulations of space plasmas including polar wind and magnetosphere–ionosphere coupling processes characterized by a wide range of temporal and spatial scales. Our earlier flux tube models with field-aligned current and microprocesses have been formulated for spatially stationary flux tubes. However, horizontal convection due to electric fields is an important aspect of the high-latitude ionosphere–polar wind system and typical time scales of the polar wind upflow are comparable to the transit time across the polar cap. To take into account this important feature we have added flux tube convection to our earlier model. Using typical convecting flux tube that starts outside auroral oval, then enters and leaves downward current region, it has been shown that anomalous transport effects due to current-driven microinstabilities significantly alter dynamics of several plasma moments and should be taken into account for an accurate interpretation and prediction of the observed data. Future applications of our new model have also been discussed.
ISSN:1364-6826
1879-1824
DOI:10.1016/j.jastp.2007.08.004