Biometrics from Brain Electrical Activity: A Machine Learning Approach

The potential of brain electrical activity generated as a response to a visual stimulus is examined in the context of the identification of individuals. Specifically, a framework for the visual evoked potential (VEP)-based biometrics is established, whereby energy features of the gamma band within V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2007-04, Vol.29 (4), p.738-742
Hauptverfasser: Palaniappan, R., Mandic, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of brain electrical activity generated as a response to a visual stimulus is examined in the context of the identification of individuals. Specifically, a framework for the visual evoked potential (VEP)-based biometrics is established, whereby energy features of the gamma band within VEP signals were of particular interest. A rigorous analysis is conducted which unifies and extends results from our previous studies, in particular, with respect to 1) increased bandwidth, 2) spatial averaging, 3) more robust power spectrum features, and 4) improved classification accuracy. Simulation results on a large group of subject support the analysis
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2007.1013