Versatile Micropatterns of N‐Heterocyclic Carbenes on Gold Surfaces: Increased Thermal and Pattern Stability with Enhanced Conductivity
Patterned monolayers of N‐heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC–CO2 adducts and NHC(H)[HCO3] salts. The NHC‐modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-08, Vol.57 (35), p.11465-11469 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patterned monolayers of N‐heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC–CO2 adducts and NHC(H)[HCO3] salts. The NHC‐modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could be modified with a second, azide‐functionalized carbene, facilitating further applications and post‐printing modifications. Thorough elucidation by a variety of analytical methods offers comprehensive evidence for the viability of the methodology reported here. The protocol enables facile access to versatile, microstructured NHC‐modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification.
Reading the fine print: Patterned monolayers of N‐heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC–CO2 adducts and NHC(H)[HCO3] salts. The protocol enables facile access to versatile NHC‐modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201807197 |