Effects of introduced groundwater on water chemistry and fish assemblages in central Florida lakes
We assessed effects of groundwater pumping to elevate lake levels on lake water chemistry and fish population metrics at seven Florida lakes. Following groundwater pumping, lake level fluctuation was reduced and lake water samples increased in mean pH, total alkalinity, total phosphorus, chloride an...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2006-02, Vol.556 (1), p.279-294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We assessed effects of groundwater pumping to elevate lake levels on lake water chemistry and fish population metrics at seven Florida lakes. Following groundwater pumping, lake level fluctuation was reduced and lake water samples increased in mean pH, total alkalinity, total phosphorus, chloride and Secchi depth compared to historical means, indicating a close resemblance to the chemistry of aquifer water in the region. Fish community metrics from the augmented lakes were compared to 36 non-augmented lakes in Florida. The mean values for catch per unit effort, species richness and biomass of harvestable fishes, determined by electrofishing, were lower in augmented lakes compared to non-augmented lakes. Canonical correspondence analysis (CCA) indicated a high probability of a low abundance of individual species in augmented lakes compared to a majority of non-augmented lakes. The augmented lake with the lowest pumping rate exhibited less of a shift in limnological variables from historical values, and had fish population characteristics more closely resembling those of non-augmented lakes. Thus, reduced volumes of groundwater introduction could lower impacts to limnological and fish population characteristics. Augmentation allows for lakes to be utilized for recreational activities, and without augmentation some lakes in central Florida would likely go dry due to groundwater withdrawals for water supply. Therefore, allowing more natural water level fluctuations and possible reductions in total pumpage are recommended to reduce impacts to limnological and fish population characteristics, while still allowing sufficient groundwater pumping to preserve lake habitats. |
---|---|
ISSN: | 0018-8158 1573-5117 |
DOI: | 10.1007/s10750-005-0936-4 |