Modeling the Interaction between Cumulus Convection and Linear Gravity Waves Using a Limited-Domain Cloud System-Resolving Model
A limited-domain cloud system–resolving model (CSRM) is used to simulate the interaction between cumulus convection and two-dimensional linear gravity waves, a single horizontal wavenumber at a time. With a single horizontal wavenumber, soundings obtained from horizontal averages of the CSRM domain...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2008-02, Vol.65 (2), p.576-591 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A limited-domain cloud system–resolving model (CSRM) is used to simulate the interaction between cumulus convection and two-dimensional linear gravity waves, a single horizontal wavenumber at a time. With a single horizontal wavenumber, soundings obtained from horizontal averages of the CSRM domain allow the large-scale wave equation to be evolved, and thereby its interaction with cumulus convection is modeled. It is shown that convectively coupled waves with phase speeds of 8–13 m s−1 can develop spontaneously in such simulations. The wave development is weaker at long wavelengths (>∼10 000 km). Waves at short wavelengths (∼2000 km) also appear weaker, but the evidence is less clear because of stronger influences from random perturbations. The simulated wave structures are found to change systematically with horizontal wavelength, and at horizontal wavelengths of 2000–3000 km they exhibit many of the basic features of the observed 2-day waves. The simulated convectively coupled waves develop without feedback from radiative processes, surface fluxes, or wave radiation into the stratosphere, but vanish when moisture advection by the large-scale waves is disabled. A similar degree of vertical tilt is found in the simulated convective heating at all wavelengths considered, consistent with observational results. Implications of these results to conceptual models of convectively coupled waves are discussed. In addition to being a useful tool for studying wave–convection interaction, the present approach also represents a useful framework for testing the ability of coarse-resolution CSRMs and single-column models in simulating convectively coupled waves. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/2007jas2399.1 |