Proliferative and osteogenic differentiation capacity of mesenchymal stromal cells: Influence of harvesting site and donor age

Human mesenchymal stromal cells (hMSCs) are the cellular source of new bone formation and an essential component of autologous bone grafts. Autologous bone graft harvesting is routinely conducted at the iliac crest, although alternative donor sites with lower complication rates are available. Thus,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Injury 2018-08, Vol.49 (8), p.1504-1512
Hauptverfasser: Prall, Wolf Christian, Saller, Maximilian Michael, Scheumaier, Anna, Tucholski, Timo, Taha, Sara, Böcker, Wolfgang, Polzer, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human mesenchymal stromal cells (hMSCs) are the cellular source of new bone formation and an essential component of autologous bone grafts. Autologous bone graft harvesting is routinely conducted at the iliac crest, although alternative donor sites with lower complication rates are available. Thus, the aim of this study was to compare hMSCs harvested from the iliac crest and the proximal tibia regarding their proliferative and osteogenic differentiation capacity. Furthermore, we investigated the influence of donor age on these biological properties. HMSCs were isolated from iliac crest or proximal tibia bone grafts of 46 patients. Proliferative capacity was assessed by cumulative population doublings, population doubling time, colony forming units and cell proliferation assays. Osteogenic capacity was assessed by quantification of extracellular calcium deposition and marker gene expression levels. The number of hMSCs per gram harvested tissue was determined. Furthermore, the adipogenic and chondrogenic differentiation capacity were quantified using BODIPY and Safranin Orange staining, respectively. Additional analyses were carried out after grouping young (18–49 years) and aged (≥50 years) donors. HMSCs derived from the proximal tibia featured a comparable proliferative and osteogenic differentiation capacity. No significant differences were found for any analysis conducted, when compared to hMSCs obtained from the iliac crest. Furthermore, no significant differences could be revealed when comparing young and aged donors. This was equally true for hMSCs from both donor sites after comparison within the same age group. Our study demonstrates comparable biological properties of hMSCs derived from both donor sites, the iliac crest and the proximal tibia. Furthermore, aging does not alter proliferative and osteogenic differentiation capacity. Consequently, the proximal tibia should be considered more closely as an alternative donor site in patients of all age groups.
ISSN:0020-1383
1879-0267
DOI:10.1016/j.injury.2018.06.024