Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.)

Phytic acid (PA, myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is important to the nutritional quality of soybean meal. Organic phosphorus (P) in PA is indigestible in humans and non-ruminant animals, which affects nutrition and causes P pollution of ground water from animal wastes. Two novel soyb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2007-11, Vol.115 (7), p.945-957
Hauptverfasser: Yuan, Feng-Jie, Zhao, Hai-Jun, Ren, Xue-Liang, Zhu, Shen-Long, Fu, Xu-Jun, Shu, Qing-Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phytic acid (PA, myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is important to the nutritional quality of soybean meal. Organic phosphorus (P) in PA is indigestible in humans and non-ruminant animals, which affects nutrition and causes P pollution of ground water from animal wastes. Two novel soybean [(Glycine max L. (Merr.)] low phytic acid (lpa) mutations were isolated and characterized. Gm-lpa-TW-1 had a phytic acid P (PA-P) reduction of 66.6% and a sixfold increase in inorganic P (Pi), and Gm-lpa-ZC-2 had a PA-P reduction of 46.3% and a 1.4-fold increase in Pi, compared with their respective non-mutant progenitor lines. The reduction of PA-P and increase of Pi in Gm-lpa-TW-1 were molar equivalent; the decrease of PA-P in Gm-lpa-ZC-2, however, was accompanied by the increase of both Pi and lower inositol phosphates. In both mutant lines, the total P content remained similar to their wild type parents. The two lpa mutations were both inherited in a single recessive gene model but were non-allelic. Sequence data and progeny analysis indicate that Gm-lpa-TW-1 lpa mutation resulted from a 2 bp deletion in the soybean d-myo-inositol 3-phosphate synthase (MIPS1 EC 5.5.1.4) gene 1 (MIPS1). The lpa mutation in Gm-lpa-ZC-2 was mapped on LG B2, closely linked with microsatellite loci Satt416 and Satt168, at genetic distances of ~4.63 and ~9.25 cM, respectively. Thus this mutation probably represents a novel soybean lpa locus. The seed emergence rate of Gm-lpa-ZC-2 was similar to its progenitor line and was not affected by seed source and its lpa mutation. However, Gm-lpa-TW-1 had a significantly reduced field emergence when seeds were produced in a subtropic environment. Field tests of the mutants and their progenies further demonstrated that the lpa mutation in Gm-lpa-ZC-2 does not negatively affect plant yield traits. These results will advance understanding of the genetic, biochemical and molecular control of PA synthesis in soybean. The novel lpa mutation in Gm-lpa-ZC-2, together with linked simple sequence repeat (SSR) markers, will be of value for breeding productive lpa soybeans, with meal high in digestible Pi eventually to improve animal nutrition and lessen environmental pollution.
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-007-0621-2