Photoinduction of electron transport on the acceptor side of PSI in Synechocystis PCC 6803 mutant deficient in flavodiiron proteins Flv1 and Flv3

After transferring the dark-acclimated cyanobacteria to light, flavodiiron proteins Flv1/Flv3 serve as a main electron acceptor for PSI within the first seconds because Calvin cycle enzymes are inactive in the dark. Synechocystis PCC 6803 mutant Δflv1/Δflv3 devoid of Flv1 and Flv3 retained the PSI c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2018-10, Vol.1859 (10), p.1086-1095
Hauptverfasser: Bulychev, Alexander A., Cherkashin, Alexander A., Muronets, Elena M., Elanskaya, Irina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After transferring the dark-acclimated cyanobacteria to light, flavodiiron proteins Flv1/Flv3 serve as a main electron acceptor for PSI within the first seconds because Calvin cycle enzymes are inactive in the dark. Synechocystis PCC 6803 mutant Δflv1/Δflv3 devoid of Flv1 and Flv3 retained the PSI chlorophyll P700 in the reduced state over 10 s (Helman et al., 2003; Allahverdiyeva et al., 2013). Study of P700 oxidoreduction transients in dark-acclimated Δflv1/Δflv3 mutant under the action of successive white light pulses separated by dark intervals of various durations indicated that the delayed oxidation of P700 was determined by light activation of electron transport on the acceptor side of PSI. We show that the light-induced redox transients of chlorophyll P700 in dark-acclimated Δflv1/Δflv3 proceed within 2 min, as opposed to 1–3 s in the wild type, and comprise a series of kinetic stages. The release of rate-limiting steps was eliminated by iodoacetamide, an inhibitor of Calvin cycle enzymes. Conversely, the creation with methyl viologen of a bypass electron flow to O2 accelerated P700 oxidation and made its extent comparable to that in the wild-type cells. The lack of major sinks for linear electron flow in iodoacetamide-treated Δflv1/Δflv3 mutant, in which O2- and CO2-dependent electron flows were impaired, facilitated cyclic electron flow, which was evident from the decreased steady-state oxidation of P700 and from rapid dark reduction of P700 during and after illumination with far-red light. The results show that the photosynthetic induction in wild-type Synechocystis PCC 6803 is largely hidden due to the flavodiiron proteins whose operation circumvents the rate-limiting electron transport steps controlled by Calvin cycle reactions. •In dark-acclimated Synechocystis Δflv1/Δflv3 mutant, P700 photooxidation is multiphasic and takes ~100 s•Photoactivation of PSI acceptor side involves an additional rate-limiting step dependent on Flv1/Flv3 proteins•Iodoacetamide impedes and methyl viologen restores eventual photooxidation of P700•Intermittent far-red light diminishes P700 oxidation in iodoacetamide-treated mutant•Far-red light enhances cyclic electron flow in the mutant with impaired linear routes
ISSN:0005-2728
1879-2650
DOI:10.1016/j.bbabio.2018.06.012