EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis

Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2018-10, Vol.220 (1), p.163-177
Hauptverfasser: Park, Joung Hun, Kang, Chang Ho, Nawkar, Ganesh M., Lee, Eun Seon, Paeng, Seol Ki, Chae, Ho Byoung, Chi, Yong Hun, Kim, Woe Yeon, Yun, Dae‐Jin, Lee, Sang Yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.15279