Gigahertz Single-Electron Pumping Mediated by Parasitic States

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-07, Vol.18 (7), p.4141-4147
Hauptverfasser: Rossi, Alessandro, Klochan, Jevgeny, Timoshenko, Janis, Hudson, Fay E, Möttönen, Mikko, Rogge, Sven, Dzurak, Andrew S, Kashcheyevs, Vyacheslavs, Tettamanzi, Giuseppe C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency-dependent features in the pumped current.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.8b00874