Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses

Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair 2008-03, Vol.7 (3), p.452-463
Hauptverfasser: Fan, Jia-Rong, Peng, An-Lin, Chen, Hsiang-Chin, Lo, Shu-Chi, Huang, Ting-Hsiang, Li, Tsai-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 3
container_start_page 452
container_title DNA repair
container_volume 7
creator Fan, Jia-Rong
Peng, An-Lin
Chen, Hsiang-Chin
Lo, Shu-Chi
Huang, Ting-Hsiang
Li, Tsai-Kun
description Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed DNA damage for the activation of downstream cellular responses remains unclear. Here, we showed proteasomal degradation of both TOP2 isozymes in a transcription-dependent manner upon etoposide treatment. Downregulation of TOP2 was preferentially associated with proteasomal removal of TOP2 in TOP2cc rather than proteolysis of free TOP2. Interestingly, blockage of TOP2 downregulation in TOP2cc also caused reduction in etoposide-induced activation of DNA damage molecules, an observation suggesting that the processing pathways of TOP2cc are involved in activation of etoposide-induced cellular responses. In this regard, we observed two TOP2cc processing pathways, replication- and transcription-initiated processing (RIP and TIP) with proteasome involved in the latter. Importantly, two processing pathways contributed to differential activation of various DNA damage signaling and downstream cellular responses. Etoposide-induced phosphorylation of p53 relied mainly on RIP, whereas activation of Chk1, Chk2 depended largely on TIP. Both RIP and TIP played roles in activating non-homologous end joining pathway, while only RIP modulated etoposide-induced cell killing in a p53-dependent manner. Collectively, our results are consistent with the notion that protein-linked DNA breakage (e.g., TOP2cc) requires processing pathways for initiating downstream DNA damage detection, repair as well as cell death programs.
doi_str_mv 10.1016/j.dnarep.2007.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20570872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786407004168</els_id><sourcerecordid>20570872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-b1b04fcafe7c6b4887d73e4d7ea8ba5857fa259b7f4195ce2b335f1aff9206163</originalsourceid><addsrcrecordid>eNp9kE2PFCEQhonRuB_6D4zhordugWmg52KyGXU12ehFz6Qail0mPdACvWb_vWxmst48VR2et1LvQ8gbznrOuPqw712EjEsvGNM9Fz1j4hk551KNnR6lev60q-GMXJSyZ4xLrdRLcsZHwdQg9DmxO5zndYZMl5wslhLiLV2g3v2Bh0JtijWHaa1Ia6L1DinYGu6hhhRp8hRrWlIJDrsQ3WrR0U_fr6iDA9wizViWFAuWV-SFh7ng69O8JL--fP65-9rd_Lj-tru66eww6tpNfGKDt-BRWzUN46id3uDgNMI4gRyl9iDkdtJ-4FtpUUybjfQcvN-2NlxtLsn7491W5feKpZpDKLb1g4hpLUYwqdmoRQOHI2hzKiWjN0sOB8gPhjPzKNfszVGueZRruDBNbou9Pd1fpwO6f6GTzQa8OwFQLMw-Q7ShPHGCcSG5lI37eOSw2bgPmE2xAWPzFzLaalwK___kLyJQm74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20570872</pqid></control><display><type>article</type><title>Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fan, Jia-Rong ; Peng, An-Lin ; Chen, Hsiang-Chin ; Lo, Shu-Chi ; Huang, Ting-Hsiang ; Li, Tsai-Kun</creator><creatorcontrib>Fan, Jia-Rong ; Peng, An-Lin ; Chen, Hsiang-Chin ; Lo, Shu-Chi ; Huang, Ting-Hsiang ; Li, Tsai-Kun</creatorcontrib><description>Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed DNA damage for the activation of downstream cellular responses remains unclear. Here, we showed proteasomal degradation of both TOP2 isozymes in a transcription-dependent manner upon etoposide treatment. Downregulation of TOP2 was preferentially associated with proteasomal removal of TOP2 in TOP2cc rather than proteolysis of free TOP2. Interestingly, blockage of TOP2 downregulation in TOP2cc also caused reduction in etoposide-induced activation of DNA damage molecules, an observation suggesting that the processing pathways of TOP2cc are involved in activation of etoposide-induced cellular responses. In this regard, we observed two TOP2cc processing pathways, replication- and transcription-initiated processing (RIP and TIP) with proteasome involved in the latter. Importantly, two processing pathways contributed to differential activation of various DNA damage signaling and downstream cellular responses. Etoposide-induced phosphorylation of p53 relied mainly on RIP, whereas activation of Chk1, Chk2 depended largely on TIP. Both RIP and TIP played roles in activating non-homologous end joining pathway, while only RIP modulated etoposide-induced cell killing in a p53-dependent manner. Collectively, our results are consistent with the notion that protein-linked DNA breakage (e.g., TOP2cc) requires processing pathways for initiating downstream DNA damage detection, repair as well as cell death programs.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2007.12.002</identifier><identifier>PMID: 18206427</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antigens, Neoplasm - genetics ; Antigens, Neoplasm - metabolism ; Antineoplastic Agents, Phytogenic - pharmacology ; Bacteriology ; Biological and medical sciences ; Cell Survival - drug effects ; Checkpoint Kinase 1 ; Checkpoint Kinase 2 ; Degradation of cleavable complex ; DNA Damage - drug effects ; DNA damage signaling ; DNA Repair - drug effects ; DNA Replication - drug effects ; DNA topoisomerase ; DNA Topoisomerases, Type II - genetics ; DNA Topoisomerases, Type II - metabolism ; DNA-Binding Proteins - antagonists &amp; inhibitors ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Down-Regulation ; Etoposide ; Etoposide - pharmacology ; Fundamental and applied biological sciences. Psychology ; Glutaminase - metabolism ; Growth, nutrition, cell differenciation ; HCT116 Cells ; Histones - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - metabolism ; Microbiology ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; Poly-ADP-Ribose Binding Proteins ; Processing ; Proteasome Endopeptidase Complex ; Protein Kinases - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Recombinational repair ; Replication Protein A - metabolism ; Topoisomerase II Inhibitors ; Transcription, Genetic - drug effects ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>DNA repair, 2008-03, Vol.7 (3), p.452-463</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-b1b04fcafe7c6b4887d73e4d7ea8ba5857fa259b7f4195ce2b335f1aff9206163</citedby><cites>FETCH-LOGICAL-c487t-b1b04fcafe7c6b4887d73e4d7ea8ba5857fa259b7f4195ce2b335f1aff9206163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1568786407004168$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20125155$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18206427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jia-Rong</creatorcontrib><creatorcontrib>Peng, An-Lin</creatorcontrib><creatorcontrib>Chen, Hsiang-Chin</creatorcontrib><creatorcontrib>Lo, Shu-Chi</creatorcontrib><creatorcontrib>Huang, Ting-Hsiang</creatorcontrib><creatorcontrib>Li, Tsai-Kun</creatorcontrib><title>Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed DNA damage for the activation of downstream cellular responses remains unclear. Here, we showed proteasomal degradation of both TOP2 isozymes in a transcription-dependent manner upon etoposide treatment. Downregulation of TOP2 was preferentially associated with proteasomal removal of TOP2 in TOP2cc rather than proteolysis of free TOP2. Interestingly, blockage of TOP2 downregulation in TOP2cc also caused reduction in etoposide-induced activation of DNA damage molecules, an observation suggesting that the processing pathways of TOP2cc are involved in activation of etoposide-induced cellular responses. In this regard, we observed two TOP2cc processing pathways, replication- and transcription-initiated processing (RIP and TIP) with proteasome involved in the latter. Importantly, two processing pathways contributed to differential activation of various DNA damage signaling and downstream cellular responses. Etoposide-induced phosphorylation of p53 relied mainly on RIP, whereas activation of Chk1, Chk2 depended largely on TIP. Both RIP and TIP played roles in activating non-homologous end joining pathway, while only RIP modulated etoposide-induced cell killing in a p53-dependent manner. Collectively, our results are consistent with the notion that protein-linked DNA breakage (e.g., TOP2cc) requires processing pathways for initiating downstream DNA damage detection, repair as well as cell death programs.</description><subject>Antigens, Neoplasm - genetics</subject><subject>Antigens, Neoplasm - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cell Survival - drug effects</subject><subject>Checkpoint Kinase 1</subject><subject>Checkpoint Kinase 2</subject><subject>Degradation of cleavable complex</subject><subject>DNA Damage - drug effects</subject><subject>DNA damage signaling</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA topoisomerase</subject><subject>DNA Topoisomerases, Type II - genetics</subject><subject>DNA Topoisomerases, Type II - metabolism</subject><subject>DNA-Binding Proteins - antagonists &amp; inhibitors</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Down-Regulation</subject><subject>Etoposide</subject><subject>Etoposide - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutaminase - metabolism</subject><subject>Growth, nutrition, cell differenciation</subject><subject>HCT116 Cells</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Microbiology</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>Poly-ADP-Ribose Binding Proteins</subject><subject>Processing</subject><subject>Proteasome Endopeptidase Complex</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Recombinational repair</subject><subject>Replication Protein A - metabolism</subject><subject>Topoisomerase II Inhibitors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2PFCEQhonRuB_6D4zhordugWmg52KyGXU12ehFz6Qail0mPdACvWb_vWxmst48VR2et1LvQ8gbznrOuPqw712EjEsvGNM9Fz1j4hk551KNnR6lev60q-GMXJSyZ4xLrdRLcsZHwdQg9DmxO5zndYZMl5wslhLiLV2g3v2Bh0JtijWHaa1Ia6L1DinYGu6hhhRp8hRrWlIJDrsQ3WrR0U_fr6iDA9wizViWFAuWV-SFh7ng69O8JL--fP65-9rd_Lj-tru66eww6tpNfGKDt-BRWzUN46id3uDgNMI4gRyl9iDkdtJ-4FtpUUybjfQcvN-2NlxtLsn7491W5feKpZpDKLb1g4hpLUYwqdmoRQOHI2hzKiWjN0sOB8gPhjPzKNfszVGueZRruDBNbou9Pd1fpwO6f6GTzQa8OwFQLMw-Q7ShPHGCcSG5lI37eOSw2bgPmE2xAWPzFzLaalwK___kLyJQm74</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Fan, Jia-Rong</creator><creator>Peng, An-Lin</creator><creator>Chen, Hsiang-Chin</creator><creator>Lo, Shu-Chi</creator><creator>Huang, Ting-Hsiang</creator><creator>Li, Tsai-Kun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20080301</creationdate><title>Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses</title><author>Fan, Jia-Rong ; Peng, An-Lin ; Chen, Hsiang-Chin ; Lo, Shu-Chi ; Huang, Ting-Hsiang ; Li, Tsai-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-b1b04fcafe7c6b4887d73e4d7ea8ba5857fa259b7f4195ce2b335f1aff9206163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Antigens, Neoplasm - genetics</topic><topic>Antigens, Neoplasm - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cell Survival - drug effects</topic><topic>Checkpoint Kinase 1</topic><topic>Checkpoint Kinase 2</topic><topic>Degradation of cleavable complex</topic><topic>DNA Damage - drug effects</topic><topic>DNA damage signaling</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA topoisomerase</topic><topic>DNA Topoisomerases, Type II - genetics</topic><topic>DNA Topoisomerases, Type II - metabolism</topic><topic>DNA-Binding Proteins - antagonists &amp; inhibitors</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Down-Regulation</topic><topic>Etoposide</topic><topic>Etoposide - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutaminase - metabolism</topic><topic>Growth, nutrition, cell differenciation</topic><topic>HCT116 Cells</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Microbiology</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>Poly-ADP-Ribose Binding Proteins</topic><topic>Processing</topic><topic>Proteasome Endopeptidase Complex</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Recombinational repair</topic><topic>Replication Protein A - metabolism</topic><topic>Topoisomerase II Inhibitors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jia-Rong</creatorcontrib><creatorcontrib>Peng, An-Lin</creatorcontrib><creatorcontrib>Chen, Hsiang-Chin</creatorcontrib><creatorcontrib>Lo, Shu-Chi</creatorcontrib><creatorcontrib>Huang, Ting-Hsiang</creatorcontrib><creatorcontrib>Li, Tsai-Kun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jia-Rong</au><au>Peng, An-Lin</au><au>Chen, Hsiang-Chin</au><au>Lo, Shu-Chi</au><au>Huang, Ting-Hsiang</au><au>Li, Tsai-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>452</spage><epage>463</epage><pages>452-463</pages><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed DNA damage for the activation of downstream cellular responses remains unclear. Here, we showed proteasomal degradation of both TOP2 isozymes in a transcription-dependent manner upon etoposide treatment. Downregulation of TOP2 was preferentially associated with proteasomal removal of TOP2 in TOP2cc rather than proteolysis of free TOP2. Interestingly, blockage of TOP2 downregulation in TOP2cc also caused reduction in etoposide-induced activation of DNA damage molecules, an observation suggesting that the processing pathways of TOP2cc are involved in activation of etoposide-induced cellular responses. In this regard, we observed two TOP2cc processing pathways, replication- and transcription-initiated processing (RIP and TIP) with proteasome involved in the latter. Importantly, two processing pathways contributed to differential activation of various DNA damage signaling and downstream cellular responses. Etoposide-induced phosphorylation of p53 relied mainly on RIP, whereas activation of Chk1, Chk2 depended largely on TIP. Both RIP and TIP played roles in activating non-homologous end joining pathway, while only RIP modulated etoposide-induced cell killing in a p53-dependent manner. Collectively, our results are consistent with the notion that protein-linked DNA breakage (e.g., TOP2cc) requires processing pathways for initiating downstream DNA damage detection, repair as well as cell death programs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18206427</pmid><doi>10.1016/j.dnarep.2007.12.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1568-7864
ispartof DNA repair, 2008-03, Vol.7 (3), p.452-463
issn 1568-7864
1568-7856
language eng
recordid cdi_proquest_miscellaneous_20570872
source MEDLINE; Elsevier ScienceDirect Journals
subjects Antigens, Neoplasm - genetics
Antigens, Neoplasm - metabolism
Antineoplastic Agents, Phytogenic - pharmacology
Bacteriology
Biological and medical sciences
Cell Survival - drug effects
Checkpoint Kinase 1
Checkpoint Kinase 2
Degradation of cleavable complex
DNA Damage - drug effects
DNA damage signaling
DNA Repair - drug effects
DNA Replication - drug effects
DNA topoisomerase
DNA Topoisomerases, Type II - genetics
DNA Topoisomerases, Type II - metabolism
DNA-Binding Proteins - antagonists & inhibitors
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Down-Regulation
Etoposide
Etoposide - pharmacology
Fundamental and applied biological sciences. Psychology
Glutaminase - metabolism
Growth, nutrition, cell differenciation
HCT116 Cells
Histones - metabolism
Humans
Intracellular Signaling Peptides and Proteins - metabolism
Microbiology
Molecular and cellular biology
Molecular genetics
Mutagenesis. Repair
Poly-ADP-Ribose Binding Proteins
Processing
Proteasome Endopeptidase Complex
Protein Kinases - metabolism
Protein-Serine-Threonine Kinases - metabolism
Recombinational repair
Replication Protein A - metabolism
Topoisomerase II Inhibitors
Transcription, Genetic - drug effects
Tumor Suppressor Protein p53 - metabolism
title Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20processing%20pathways%20contribute%20to%20the%20activation%20of%20etoposide-induced%20DNA%20damage%20responses&rft.jtitle=DNA%20repair&rft.au=Fan,%20Jia-Rong&rft.date=2008-03-01&rft.volume=7&rft.issue=3&rft.spage=452&rft.epage=463&rft.pages=452-463&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2007.12.002&rft_dat=%3Cproquest_cross%3E20570872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20570872&rft_id=info:pmid/18206427&rft_els_id=S1568786407004168&rfr_iscdi=true