Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses

Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair 2008-03, Vol.7 (3), p.452-463
Hauptverfasser: Fan, Jia-Rong, Peng, An-Lin, Chen, Hsiang-Chin, Lo, Shu-Chi, Huang, Ting-Hsiang, Li, Tsai-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed DNA damage for the activation of downstream cellular responses remains unclear. Here, we showed proteasomal degradation of both TOP2 isozymes in a transcription-dependent manner upon etoposide treatment. Downregulation of TOP2 was preferentially associated with proteasomal removal of TOP2 in TOP2cc rather than proteolysis of free TOP2. Interestingly, blockage of TOP2 downregulation in TOP2cc also caused reduction in etoposide-induced activation of DNA damage molecules, an observation suggesting that the processing pathways of TOP2cc are involved in activation of etoposide-induced cellular responses. In this regard, we observed two TOP2cc processing pathways, replication- and transcription-initiated processing (RIP and TIP) with proteasome involved in the latter. Importantly, two processing pathways contributed to differential activation of various DNA damage signaling and downstream cellular responses. Etoposide-induced phosphorylation of p53 relied mainly on RIP, whereas activation of Chk1, Chk2 depended largely on TIP. Both RIP and TIP played roles in activating non-homologous end joining pathway, while only RIP modulated etoposide-induced cell killing in a p53-dependent manner. Collectively, our results are consistent with the notion that protein-linked DNA breakage (e.g., TOP2cc) requires processing pathways for initiating downstream DNA damage detection, repair as well as cell death programs.
ISSN:1568-7864
1568-7856
DOI:10.1016/j.dnarep.2007.12.002