Structure/Function Relationships of Several Biopolymers as Related to Invertase Stability in Dehydrated Systems
Structure/function relationships of different biopolymers (alginate, dextran, or β-cyclodextrin) were analyzed as single excipients or combined with trehalose in relation to their efficiency as enzyme stabilizers in freeze-dried formulations and compared to trehalose. Particularly, a novel synthesiz...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2008-02, Vol.9 (2), p.741-747 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structure/function relationships of different biopolymers (alginate, dextran, or β-cyclodextrin) were analyzed as single excipients or combined with trehalose in relation to their efficiency as enzyme stabilizers in freeze-dried formulations and compared to trehalose. Particularly, a novel synthesized polymer β-cyclodextrin-branched alginate (β-CD-A) was employed as excipient. During freeze-drying, the polymers or their mixtures did not confer better protection to invertase compared to trehalose. β-CD-A (with or without trehalose), β-cyclodextrin (β-CD), or dextran with trehalose were the best protective agents during thermal treatment, while β-CD and alginate showed a negative effect on invertase activity preservation. The β-CD linked alginate combined the physical stability provided by alginate with the stabilization of hydrophobic regions of the enzyme provided by cyclodextrin. β-CD-A was effective even at conditions at which trehalose lost its protective effect. A relatively simple covalent combination of two biopolymers significantly affected their functionalities and, consequently, their interactions with proteins, modifying enzyme stability patterns. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm7012108 |