Induction of REDD1 via AP-1 prevents oxidative stress-mediated injury in hepatocytes

Regulated in development and DNA damage responses 1 (REDD1) is an inducible gene in response to various stresses, which functions as a negative regulator of the mammalian target of rapamycin protein kinase in complex 1. In the present study, we identified the role of REDD1 under the oxidative stress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2018-08, Vol.124, p.221-231
Hauptverfasser: Cho, Sam Seok, Kim, Kyu Min, Yang, Ji Hye, Kim, Ji Young, Park, Su Jung, Kim, Seung Jung, Kim, Jae Kwang, Cho, Il Je, Ki, Sung Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regulated in development and DNA damage responses 1 (REDD1) is an inducible gene in response to various stresses, which functions as a negative regulator of the mammalian target of rapamycin protein kinase in complex 1. In the present study, we identified the role of REDD1 under the oxidative stress-mediated hepatocyte injury and its regulatory mechanism. REDD1 protein was increased in H2O2 or tert-butylhydroperoxide (t-BHP)-treated hepatocytes· H2O2 also elevated REDD1 mRNA levels. This event was inhibited by antioxidants such as diphenyleneiodonium chloride, N-acetyl-L-cysteine, or butylated hydroxy anisole. Interestingly, we found that H2O2-mediated REDD1 induction was transcriptionally regulated by activator protein-1 (AP-1), and that overexpression of c-Jun increased REDD1 protein levels and REDD1 promoter-driven luciferase activity. Deletion of the putative AP-1 binding site in proximal region of the human REDD1 promoter significantly abolished REDD1 transactivation by c-Jun. A NF-E2-related factor 2 activator, tert-butylhydroquinone treatment also elevated REDD1 levels, but it was independent on NF-E2-related factor 2 activation. Furthermore, we observed that REDD1 overexpression attenuated H2O2 or t-BHP-derived reactive oxygen species formation as well as cytotoxicity. Conversely, siRNA against REDD1 aggravated t-BHP-induced reactive oxygen species generation and cell death. In addition, we showed that REDD1 was induced by in vitro or in vivo ischemia/reperfusion model. Our results demonstrate that REDD1 induction by oxidative stress is mainly transcriptionally regulated by AP-1, and protects oxidative stress-mediated hepatocyte injury. These findings suggest REDD1 as a novel molecule that reduced susceptibility to oxidant-induced liver injury. [Display omitted] •REDD1 was enhanced in response to oxidative stress.•AP-1 site from − 644 to − 638 bp in human REDD1 was critical for gene expression.•REDD1 protects cells against ROS in hepatocytes.
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2018.06.014