An overview of microbial biogas enrichment
•Recent advances in microbial biogas upgrading are presented.•Ex-situ, in-situ and bioelectrochemical methane enrichment approaches are compared.•Mass transfer limitation and dynamics shift of bacteria-archaea are discussed.•H2 mediated existing pilot and commercial plants are discussed. Biogas upgr...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2018-09, Vol.264, p.359-369 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Recent advances in microbial biogas upgrading are presented.•Ex-situ, in-situ and bioelectrochemical methane enrichment approaches are compared.•Mass transfer limitation and dynamics shift of bacteria-archaea are discussed.•H2 mediated existing pilot and commercial plants are discussed.
Biogas upgrading technologies have received widespread attention recently and are researched extensively. Microbial biogas upgrading (biomethanation) relies on the microbial performance in enriched H2 and CO2 environments. In this review, recent developments and applications of CH4 enrichment in microbial methanation processes are systematically reviewed. During biological methanation, either H2 can be injected directly inside the anaerobic digester to enrich CH4 by a consortium of mixed microbial species or H2 can be injected into a separate bioreactor, where CO2 contained in biogas is coupled with H2 and converted to CH4, or a combination hereof. The available microbial technologies based on hydrogen-mediated CH4 enrichment, in particular ex-situ, in-situ and bioelectrochemical, are compared and discussed. Moreover, gas-liquid mass transfer limitations, and dynamics of bacteria-archaea interactions shift after H2 injection are thoroughly discussed. Finally, the summary of existing demonstration, pilot plants and commercial CH4 enrichment plants based on microbial biomethanation are critically reviewed. |
---|---|
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2018.06.013 |