Designer Protein-Based Performance Materials
Repeat sequence protein polymer (RSPP) technology provides a platform to design and make protein-based performance polymers and represents the best nature has to offer. We report here that the RSPP platform is a novel approach to produce functional protein polymers that have both biomechanical and b...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2006-01, Vol.7 (9), p.2543-2551 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Repeat sequence protein polymer (RSPP) technology provides a platform to design and make protein-based performance polymers and represents the best nature has to offer. We report here that the RSPP platform is a novel approach to produce functional protein polymers that have both biomechanical and biofunctional blocks built into one molecule by design, using peptide motifs. We have shown that protein-based designer biopolymers can be made using recombinant DNA technology and fermentation and offer the ability to screen for desired properties utilizing the tremendous potential diversity of amino acid combinations. The technology also allows for large-scale manufacturing with a favorable fermentative cost-structure to deliver commercially viable performance polymers. Using three diverse examples with antimicrobial, textile targeting, and UV-protective agent, we have introduced functional attributes into structural protein polymers and shown, for example, that the functionalized RSPPs have possible applications in biodefense, industrial biotechnology, and personal care areas. This new class of biobased materials will simulate natural biomaterials that can be modified for desired function and have many advantages over conventional petroleum- based polymers. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm060464aPII:S1525-7797(06)00464-8 |